imtoken im钱包下载|什么是ethnic diversity

imtoken im钱包下载 2024-03-14 21:12:34

外交话题 | 外交与种族多样性 - 知乎

外交话题 | 外交与种族多样性 - 知乎切换模式写文章登录/注册外交话题 | 外交与种族多样性夏川南​金融合规/资产证券化/股票交易本文首发于微信公众号The Diplomatist(ID:TheDiplomatist)外交话题 | 外交与种族多样性作者:夏川南连日来,围绕种族歧视问题展开的游行示威在美国多地不断升级,让许多城市陷入了半瘫痪状态。这在其他不少欧美国家也引发了连锁反应,让苦于居家隔离的民众迫不及待地涌上街头,不畏新冠病毒的凶险,表达种族平等的诉求。被誉为世界灯塔的美利坚合众国,其内部的种族矛盾一直十分尖锐。在两党政治博弈中,种族问题往往是决定胜负的那枚关键棋子,考验着政客的执政能力,也考验着民众的认知水平。五月底在白宫附近的抗议者。来源:https://politi.co/37jVYuR对外交机构来说,种族问题又意味着什么呢?在这场席卷全球的种族平权运动中,外交机构可以置身事外吗?今天主编就来和大家聊聊外交机构与种族多样性的挑战。何为种族,为何要多样性?在谈种族多样性前,首先我们需要对“种族(ethnicity)”进行定义。目前社会学和人类学家对种族的定义主要有两种。一种认为种族是天生的,而种族的划分时基于人出生时就具备的一些特质,比方说肤色。另一种则将种族视为后天形成的,是一种社会建构,而种族的划分则基于人对特定事物的认同,比方说语言、宗教、习俗。这两种定义不一定是相互排斥的。在不同的社会情境中,人们对种族的理解和划分也有所不同。不同国家和地区对种族的划分存在显著差异。来源:Hasmath, Reza, ed. Managing ethnic diversity: Meanings and practices from an international perspective. Routledge, 2016.种族研究的重点却不在于制定标准来分清你我他,而在于研究种族对群体互动(group interaction)的影响。这就很难绕开对权力关系(power relations)的讨论。在一个社会中,规模不一、掌控不同权力的族群在互动中往往扮演着支配者或被支配者的角色。具体来讲,一个族群在社会中可能扮演的角色有四种:dominant majority; dominant elite; mass subjects; minority group.(笔者实在翻译不出来,还请各位指教。)拥有不同规模和权力的族群在社会中扮演着不同角色。这种不对等的权力关系是当前各国社会中种族矛盾的根源。解决种族问题的关键因此就在于赋权。赋权的途径有很多,可以是通过反歧视法案,可以是通过保障各族群有公平的受教育机会,也可以是提高弱势族群在国家机构中的占比。本文对种族多样性的讨论将主要围绕第三种途径展开。为什么这件事会让外交机构如此头疼?外交机构中的种族多样性外交机构为什么应当重视种族多样性?首先是源于前面提到的来自国内政治的压力。当种族多元在一国内部成为政治正确,作为一个国家机构,外交机构也必须做出应对,提高自身人员构成的种族多样性。而作为一个国家与世界互动的门户,对外交机构而言种族多样性还有着超越国内政治博弈的意义。一方面,种族多元性正在逐渐演变成一种国际准则。要想在国际社会中受到尊重,绞尽脑汁去搞特立独行还不如随大流来得有效。当大多数国家都以种族多元为政治正确时,为一国形象代言的外交部自然也应该努力提高自身的种族多样性。另一方面,种族多样性也有利于某些外交政策在特定区域的执行。试想,如果欧美国家对内大谈种族平等,对外又派出清一色的白人外交官到第三世界国家去搞南北合作,那该是多么虚伪的行为(虽然这样的虚伪行为并不少见)。一支种族多元的外交队伍,则可以大大提升这类外交政策的合法性(legitimacy),推动其执行。然而种族多样性说起来容易,实际上却并不好操作。在招募外交人才的过程中,如何平衡多样性和公平性,令各国外交机构头疼不已。外交部作为外交政策的执行机构,对其官员的素质要求非常高。外交官们是要代表一个国家去谈判桌上谈判的,是要在异国他乡维护国家利益的。因此在选拔人才时,个人能力必定是最重要的考察内容。政治正确可能让政治家上位,但难以让人在外交领域前行。这种高门槛、高要求使得外交官这个职业从古至今都具有强烈的精英主义色彩,在欧美国家一度是上流社会白人(男性)才玩得转的高端职业,而在社会中处于被统治地位的族群则往往由于受教育水平不够,或因明明暗暗的歧视而难以在这个行业谋得一官半职。维也纳会议(1814-1815)现场实录。欧洲历史的进程一度掌握在贵族白人男性手里。图片来源:https://bit.ly/377SCe8到了今天,种族不平等问题也还远远没有解决,在很多国家,少数族裔的社会经济地位和受教育水平仍然显著低于占主导地位的族群。少数族裔精英的缺失,也就意味着在外交部这个精英主义机构中推行种族多元将面临重重困难。如何保证招募的外交人才既是精英,又能满足种族多元的需求,同时使得招募程序又不违背公平竞争的原则?这么令人头疼的问题还是留给下一篇文章吧。下次我会用几个(不一定成功的)真实案例来向大家展示各国外交部是在如何尝试完成这个重要而又艰难的任务。TBC微信公众号:TheDiplomatist知乎专栏:The Diplomatist 外交学人参考文献Hasmath, Reza, ed. Managing ethnic diversity: Meanings and practices from an international perspective. Routledge, 2016.Lequesne, Christian, Gabriel Castillo, Minda Holm, Walid Jumblatt Abdullah, Halvard Leira, Kamna Tiwary, and Reuben Wong. "Ethnic Diversity in the Recruitment of Diplomats: Why MFAs Take the Issue Seriously", The Hague Journal of Diplomacy 15, 1-2: 43-65, doi: https://doi.org/10.1163/1871191X-15101062发布于 2020-06-25 21:53政治外交种族​赞同 6​​添加评论​分享​喜欢​收藏​申请

【社会科学101】民族,种族和族群(上) - 知乎

【社会科学101】民族,种族和族群(上) - 知乎首发于社会科学101切换模式写文章登录/注册【社会科学101】民族,种族和族群(上)伊识ish科技,科学和猫。↑gzh同名,知乎看心情搬运,but内容精修阅读预计用时 5 分钟。今天讲啥?· 族群是什么?· 民族是什么?可以和nation通用吗?大家好,欢迎来到伊识。不管你是70后80后还是90后,只要你上网,就听过种族歧视,只要你上学,就学过中华民族,所以相信大家都对种族和民族两个词语都耳熟能详。但究竟种族是什么,民族从哪里来,种族又和民族有什么关系,除了全知全能的老司机少有人能侃出个一二三。学过英语的同学们都知道,nation这个词有很多意思,并且十分难运用在不同语境中,令小时(ke)候 (ai) 的我一度十分困惑。直到问了英语老师,感觉他们也无法在不同语境中灵(yi)活(zhi)运(ban)用(jie),这其实也不怪他们,要怪的是这个复杂的世界!族群/ Ethnic groups无论国内外,很多概念在不仅在日常的读物中而且在社会科学文章中页经常被混用,以至于给读者造成了不小的困扰,其中族群(Ethnic Groups)不仅和西文原意的国民,国族(Nation)也和我国特定的民族经常混用。在西文语境中Ethnic group也常与race和nation等词汇混用,具体用法要看在语境中较为强调哪一方面。(Bruce and Yearley 2006, 94)族群这个词语意为,在一定规模上的一个群体,其中的人或民族(这里可以理解为群体,字典解释都让人看得迷迷糊糊)声称其有共同祖先。他们通常被相同的语言,宗教,文化和历史团结在一起。通常这些所声称的共同祖先皆为虚构且不确定。族群和民族的区别在于,族群并不要求有政治上的调动性。而大多数的国族主义会要求被和自己同族的人统治。在大多数民族(Nation)中都有一个“族群核心(Ethnic core)”,其基于对族群的正规性和超然性在政治上的声明。然而和其他民族共享领土和对国家的忠诚性也是可行的。(Bruce and Yearley 2006, 94)国族/民族 (nation)我们先来看一些剑桥社会学字典里对Nation和Nationalism的定义。作者认为,国族是一种在国族国家中基于社会生活的,最稳定,最自然的政治单位。所以造成了一些群体把自身定义为国族以致可以进行“民族自决”。(Turner 2006, 412)所以国族主义(Nationalism)从一开始是没有问题的,难的是搞明白国族的概念和国族本身是什么。为什么这么说呢?有不同背景的国家对于国族有不同的定义,国族是一个始于十八世纪末德国的一个概念,在法国大革命时被重新定义。在德国当时强调国族是族群性的,也就是说由基因定义。这个概念在法国被看成是基于城市和文化的,并不像德国一样基于血统。虽说欧洲人当时已经提出了一个词的两种概念,但是这个词也是在十九世纪五十年代借着民主和自由主义而广泛传播的。(Turner 2006, 412)所以可以说在族群成分不复杂的国家,民族和国族的概念是可以混用的。然而在这时间段上国族主义也正被当时盛行的社会达尔文主义(Social Darwinism)带歪,当时的国族主义被右翼分子重新定义为一个无包容性的,十分有攻击性的理念。国族主义一度和帝国主义(即可视作殖民主义)相提并论,因此也为殖民主义(Colonialism)提供了许多理论支持,后期也一度转化为法西斯主义和其他极权意识形态和运动。(Turner 2006, 412)顾颉刚先生在和费孝通先生隔空辩论时也提到过,民族在当时的中国算是一个殖民国引入的,用来分化中华民族的重新发明的概念,虽然顾老不是社会学家和人类学家(他是历史学家),也没写过民族志(Ethnography),但是据他观察,在引入这一概念后,五大民族的冲突明显增长,且互有攻击性。当时的其他四大民族均在各种意义上尝试过进行民族自决。这一乱象其实不只在国内发生过,在许多国家也发生过类似的情况,一些国族分化成不同的族群后引发了大量对于本族状况(National status)不满从而尝试“把我族从异族法律解放出来的”所造成的冲突。(Turner 2006, 413)“民族”一词在中国之广泛流传,则是迟至二十世纪初期之事,而此时一般所使用者,却与上述的语言先例略无瓜葛,而是借自明治维新时期日本知识分子拼凑“民”、“族”二字,以对译西文 nation 一词所成的汉语新词。易言之,吾人今日习用之“民族”一词,实为一翻译名词,也是十九、二十世纪之交,中、西、日等不同文化系统间跨语际(translingual)文化实践的特殊产物。(Liu 1995)Translingual Practice: Literature, National Culture, and Translated Modernity - China, 1900-1937也就是说,民族这个概念直到十九世纪末,二十世纪初期才出现在中国。所以,民族二字为从清朝覆灭到民国成立,民族这个词才更多地出现在当时人民的生活中。孙中山在当时提出的三民主义讲的是民主民生和民族。二十世纪初在殖民主义思想席卷全球之际,这个词对于现在的社会科学家来说仍然没有明确定义,以当时在现代人文科学领域尚无建树的清末民初的中国人来讲有些难以客观理解。尤其是大环境的背景是建立在在内部为满汉冲突,外部是周围日俄帝国虎视眈眈,且全世界还在流行“殖民”这一概念时。费孝通先生作为受过西方教育的社会人类学博士(是开创了现代人类学研究的大拿Malinowski的学生),也对我国的民族由国外的nation翻译过来有些意见。他认为,中华民族和56个民族是两种概念,两者并不在一个层次上。在56个民族中,同一民族中有时也会分成不同的群落。所以可以看出民族这个概念在中文中十分混淆。这个情况其实是因为,“民族”这个词由日本人明治维新时,结合西方对于的nation的定义和中国古代史书拼凑后流传至中国。而后在中国的定义都是人们尝试在解读这个词,或是赋予这个词各种含义。总的来说社会科学界已经为这个概念混淆苦恼了一个世纪了,至今其实还没有绝对的明确定义。在全球化以及多元化的今天,弄清民族怎么翻译,怎么定义,也是从文化上接轨世界的一大步。其实不仅国内的科学家们对如何翻译这个词颇有争议,国外的汉学家也有建议直接使用minzu作为中国特色的对国内民族概况的代称。(马戎 2016, 1–2,11)今天呢就先讲到这里,种族和族群的区别和关系就下一期讲啦~源:ReferencesBorgatta, Edgar F., and Rhonda J. V. Montgomery. 2000. Encyclopedia of Sociology. 2. ed. New York, NY: Macmillan.Bruce, Steve, and Steven Yearley. 2006. The Sage Dictionary of Sociology. London: SAGE.Liu, Lydia H. 1995. Translingual Practice: Literature, National Culture, and Translated Modernity - China, 1900-1937 / Lydia H. Liu. Stanford, Calif. Stanford University Press.Turner, Bryan S., ed. 2006. The Cambridge Dictionary of Sociology. Cambridge: Cambridge Univ. Press. http://www.loc.gov/catdir/enhancements/fy0664/2006023248-d.html.马戎, ed. 2016.中华民族是一个: 围绕1939年这一议题的大讨论/21世纪中国民族问题丛书. 1st ed. Beijing: 社会科学文献出版社.封面图:红 梅花 - Pixabay上的免费照片https://pixabay.com/zh/photos/red-plum-blossom-2267873/吐槽啥时候你能勇敢且自信的对外国人喊出“老娘叫翠花,不叫Tiffany!”那我们就稳了。文章版权属于作者,未经授权禁止转载。如有需要请联系 sns_ish@hotmail.com【欢迎转发到朋友圈分享给亲朋好友~】发布于 2021-01-29 00:20中华民族民族族群​赞同 7​​4 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录社会科学101分享社科

race 和 ethnicity该怎么区别? - 知乎

race 和 ethnicity该怎么区别? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册英语race 和 ethnicity该怎么区别?经常看到如果一段话里提到race,后面通常都会跟一个and ethnicity,它们的区别在哪儿?民族、种族?自我认知和外界标签?关注者36被浏览159,201关注问题​写回答​邀请回答​好问题 2​添加评论​分享​5 个回答默认排序May Wang若要了时当下了,若觅了时无了时。​ 关注这学期正好修了一门社会学课程,讲述美国移民历史下的种族理解,首先看牛津字典和社会学字典上的两个单词的定义EthnicityIndividuals who consider themselves, or are considered by others, to share common characteristics that differentiate them from the other collectivities in a society, and from which they develop their distinctive cultural behaviour, form an ethnic group. Race:each of the major divisions of humankind, having distinct physical characteristics 简言之,Race应该翻译成种族,它是以“外表”来区别,正如我们常说的黄种人,白种人,黑种人。种族歧视主义的英文就为Racist 而Ethnicity应该定义成族群,它是以后天的”文化认同“来区别,由于共同的信仰,语言,文化习俗和历史背景而产生的归属感,是一种主观的自我认定而形成的。这两个词还会经常同Nation(民族)相联系。对于社会学了解还是比较浅显,如果有错误还希望有所指正。发布于 2013-11-14 10:19​赞同 95​​5 条评论​分享​收藏​喜欢收起​吴蜀春菩萨畏因,众生畏果。​ 关注工作的时候想到这个问题,给你看一个调查表里的划分吧。ethnicity下的选项分为:Hispanic or LatinoCentral AmericanCubanLatin AmericanDominicanMexicanPuerto RicanSouth AmericanSpaniardNot Hispanic or LatinoNot Applicablerace选项的划分为:American Indian or Alaska NativeAsianBlack or African AmericanNative Hawaiian or Other Pacific IslanderWhite发布于 2018-07-09 14:32​赞同 14​​2 条评论​分享​收藏​喜欢

族群 - 维基百科,自由的百科全书

族群 - 维基百科,自由的百科全书

跳转到内容

主菜单

主菜单

移至侧栏

隐藏

导航

首页分类索引特色内容新闻动态最近更改随机条目资助维基百科

帮助

帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科

搜索

搜索

创建账号

登录

个人工具

创建账号 登录

未登录编辑者的页面 了解详情

贡献讨论

目录

移至侧栏

隐藏

序言

1字源

2涵义

3形成

4类型

5参见

6参考文献

开关目录

族群

17种语言

العربيةBikol CentralБеларуская (тарашкевіца)کوردیČeštinaDeutschEnglishفارسی日本語TyapनेपालीPolskiPortuguêsРусскийSlovenčinaСрпски / srpskiУкраїнська

编辑链接

条目讨论

大陆简体

不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體

阅读编辑查看历史

工具

工具

移至侧栏

隐藏

操作

阅读编辑查看历史

常规

链入页面相关更改上传文件特殊页面固定链接页面信息引用本页获取短URL下载二维码维基数据项目

打印/导出

下载为PDF可打印版

在其他项目中

维基共享资源

维基百科,自由的百科全书

  此条目介绍的是汉语翻译中关于民族一词的其中一种翻译更为准确的义项。关于民族的其他含义,请见“民族 (消歧义)”。关于族的其他意思,请见“族”。

  关于生物学上的族群,请见“种群”。

人类学

人类学大纲(英语:Outline of anthropology)人类学史

分支领域

考古学

体质人类学

文化人类学

语言人类学

社会人类学

考古学

空中考古学(英语:Aerial archaeology)

航空考古学(英语:Aviation archaeology)

战场考古学(英语:Battlefield archaeology)

圣经考古学

生物考古学

环境考古学

民族考古学

实验考古学(英语:Experimental archaeology)

女性主义考古学(英语:Feminist archaeology)

法医人类学

海洋考古学(英语:Maritime archaeology)

古民族植物学(英语:Paleoethnobotany)

动物考古学

体质人类学

人与动物关系学

生物文化人类学(英语:Biocultural anthropology)

演化人类学

法医人类学

分子人类学

神经人类学(英语:Neuroanthropology)

营养人类学(英语:Nutritional anthropology)

古人类学

灵长类学

社会人类学文化人类学

应用人类学

艺术人类学

认知人类学

电子人类学(英语:Cyborg anthropology)

发展人类学

数码人类学

生态人类学

环境人类学(英语:Environmental anthropology)

经济人类学

人类学中的政治经济学(英语:Political economy in anthropology)

女性主义人类学

饮食人类学

人种历史学(英语:Ethnohistory)

制度人类学(英语:Anthropology of institutions)

亲属

法律人类学(英语:Legal anthropology)

媒体人类学

医疗人类学

民族博物馆学(英语:Ethnomuseology)

民族音乐学

政治人类学

心理人类学(英语:Psychological anthropology)

公共人类学(英语:Public anthropology)

宗教人类学

象征人类学

超个人人类学(英语:Transpersonal anthropology)

城市人类学

视觉人类学

语言人类学

人类语言学

描写语言学派

民族语言学

民族志诗学(英语:Ethnopoetics)

历史语言学

符号人类学(英语:Semiotic anthropology)

社会语言学

文化人类学

人体测量学

民族志

网络志

民族学

跨文化比较(英语:Standard cross-cultural sample)

参与观察

科学整体论(英语:Holism in science)

反身性

深描(英语:Thick description)

文化相对论

民族中心主义

主位与客位(英语:Emic and etic)

基本概念

文化

发展人类学

族群

演化

社会文化进化论

社会性别

亲属

迷因

史前时代

人种

社会

价值(英语:Anthropological theories of value)

殖民主义 / 后殖民主义

重要理论

行动者网络理论

联姻理论(英语:Alliance theory)

跨文化研究

文化唯物主义(英语:Cultural materialism (anthropology))

文化理论(英语:Culture theory)

传播论

女性主义人类学

历史特殊论

博厄斯人类学(英语:Boasian anthropology)

结构功能主义

象征人类学

人类表演学(英语:Performance studies)

政治经济学(英语:Political economy in anthropology)

实践理论(英语:Practice theory)

结构人类学

后结构主义

系统论(英语:Systems theory in anthropology)

列表

人类学家列表

查论编

族裔(英语:Ethnicity),指彼此共享了相同的祖先、血缘、外貌、历史、文化、习俗、语言、地域、宗教、生活习惯与国家体验等,因而形成的一个共同群体。为区分我族及他者的分类方式之一。这些区别我者和他者的族群性被称为种族划分,其特质可能包括“客观”及“主观”(如认知和感情的成分)。[1][2]

字源[编辑]

族裔,这个名词译自英语Ethnic,源自于古希腊语ἔθνος(ethnos)的形容词形态ἐθνικός(ethnikos),字面意思为家庭的,或人群的,指具有共同起源祖先、文化和风俗习惯的人群。这个单字成为拉丁语ethnicus,在中世纪时成为中古英文的单字。在中世纪时,它对应到英语folk,在中世纪晚期,它对应到英语people。族裔(ethnos)在19世纪的含义是欧洲人用来指代国内的少数族群乃至非欧洲的移民、种族,1900年后的含义转变到以文化特征区分,而最新的看法则认为族裔是社会过程后的产生的结果。因此,族群可能因历史及时空环境,基于历史、文化、语言、地域、宗教、血缘祖先认同、行为、生物/外貌特征而形成“一群”与其它有所区别的群体。[3][4]

据中国民族学与人类学学者郝时远考据,族裔的古汉语“民族”有可能在近代传入日本,然而现代意义的赋予主要是在日译西书(主要是德人著作)中对应了“Ethnic group(族裔)”和“Nation(国族)”等名词。

涵义[编辑]

族裔可以指民族或种族,也可以指具有相同语言、行为取向、地缘、祖籍、文化背景或宗教信仰的群体,[5]属于文化人类学或社会学概念。

形成[编辑]

群族并不是客观事物,而是由人界定和划分的,有很大的伸缩性。族群身份有时是自我界定的,为了谋求群体团结、抵抗歧视、争取政治经济权益、自我标榜炫耀等等;族群身份有时则是外在决定或“被划分”的。[6]

类型[编辑]

国籍层面

中国人、印度人、日本人、德国人、英国人、美国人、韩国人、泰国人、俄罗斯人

国族层面

中华民族、朝鲜民族、大和民族、马来西亚民族、苏联民族、俄罗斯民族

族群层面

中国朝鲜族、中国俄罗斯族、琉球族、苗族、爪哇族、蒙古族、汉族、德意志族、犹太族、

次民族层面

亚族群、部族、氏族、宗族、乌珠穆沁人、嘉绒人

宗教层面

信仰伊斯兰教的群体穆斯林、信仰德鲁兹派的群体

参见[编辑]

族群列表

国民、国族(Nation)

人种、种族(Race)

原住民、土著

参考文献[编辑]

^ 绫部恒雄 洪时荣 《民族译丛》 1988年05期 Ethnicity的主观和客观要素 (页面存档备份,存于互联网档案馆)

^ 熊子维,台湾族群别社会地位之变迁-主客观指标的分析 (页面存档备份,存于互联网档案馆)

^ p.456 "The ideas of ethnicity and ethnic group have a long history, often related to "otherness". In the 20th century and beyond, the idea of what constitutes an ethnic group has changed, once associated with minority status and later with cultural characteristics, ethnicity is most recently viewed as the outcome of a social process" Richard T. Schaefer. Encyclopedia of race, ethnicity, and society. SAGE Publications. 2008 [11 December 2012]. ISBN 978-1-4129-2694-2. (原始内容存档于2014-09-22). 

^ 叶江《古希腊语词汇“εθνοζ”(ethnos)在古希腊文献中之内涵考辨》

^ Emily Honig著,卢明华译:《苏北人在上海,1850-1980》(上海:上海古籍出版社,2004),页7。

^ Emily Honig:《苏北人在上海》,页7-8。

查论编族群相关概念

氏族

族群

族志群体

族语群体(英语:Ethnolinguistic group)

族教群体

现实主义民族学(英语:Ethnographic realism)

连字符族群(英语:Hyphenated ethnicity)

原住民

内团体与外团体

元族群(英语:Meta-ethnicity)

都市族群性(英语:Metroethnicity)

少数群体

单一族群国家

国族

国籍

泛族群性(英语:Panethnicity)

多元族群(英语:Polyethnicity)

多元族群国家

种群

人种

族群象征(英语:Symbolic ethnicity)

部族

民族学

人类学

民族学研究(英语:Ethnic studies)

民族考古学

民族生物学(英语:Ethnobiology)

民族植物学

民族真菌学(英语:Ethnomycology)

民族动物学(英语:Ethnozoology)

民族生态学(英语:Ethnoecology)

民族电影(英语:Ethnocinema)

族群地质学

民族志

民族自传学(英语:Autoethnography)

临床民族学(英语:Clinical ethnography)

批判民族学(英语:Critical ethnography)

制度民族学(英语:Institutional ethnography)

网络民族学(英语:Netnography)

网络志

以人为本的民族学(英语:Person-centered ethnography)

抢救民族志

跨族群民族学(英语:Transidio Ethnography)

影音民族学(英语:Video ethnography)

族群史(英语:Ethnohistory)

民族语言学

民族学

民族数学(英语:Ethnomathematics)

民族统计学(英语:Ethnostatistics)

民族医学

民族学方法论

民族博物学(英语:Ethnomuseology)

民族音乐学

民族哲学(英语:Ethnophilosophy)

民族精神医药学(英语:Ethnopsychopharmacology)

民族诗(英语:Ethnopoetics)

民族科学(英语:Ethnoscience)

民族符号学(英语:Ethnosemiotics)

民族分类学(英语:Ethnotaxonomy)

族群列表

非洲族群(英语:List of ethnic groups of Africa)

美洲

美洲原住民

加拿大族群(英语:Ethnic origins of people in Canada)

墨西哥族群

美国族群

中美洲族群(英语:Ethnic groups in Central America)

南美洲族群(英语:Ethnic groups in South America)

亚洲族群(英语:Ethnic groups in Asia)

中亚族群(英语:Ethnic groups of Central Asia)

东亚族群(英语:Ethnic groups of East Asia)

西伯利亚族群

南亚族群

东南亚族群(英语:Ethnic groups of Southeast Asia)

西亚族群(英语:Ethnic groups in the Middle East)

澳大利亚族群

澳大利亚原住民

欧洲族群

大洋洲

大洋洲原住民族群(英语:Indigenous peoples of Oceania)

大洋洲欧裔族群(英语:Europeans in Oceania)

身份认同和 民族产生(英语:ethnogenesis)

跨种族效应

同化

文化认同

区域居民称谓词

发展(英语:Ethnic identity development)

内名与外名

族群旗帜(英语:Ethnic flag)

族群选项(英语:Ethnic option)

族群起源(英语:Ethnic origin)

民族宗教

民间宗教

族群普查(英语:Race and ethnicity in censuses)

族群科幻(英语:Ethnofiction)

民族称呼

历史种族概念(英语:Historical race concepts)

想像的共同体

亲属

传奇先祖(英语:Legendary progenitor)

宗法社会(英语:Lineage-bonded society)

Mythomoteur(英语:Mythomoteur)

Mores(英语:Mores)

国家建立

民族国家

民族语言

民族神话(英语:National myth)

起源传说(英语:Origin myth)

Pantribal sodality(英语:Pantribal sodality)

部落名称(英语:Tribal name)

部落主义(英语:Tribalism)

Urheimat(英语:Urheimat)

多国族国家(英语:Multinational state)

协商民主

离散政治

主导少数(英语:Dominant minority)

族群民主(英语:Ethnic democracy)

族群飞地(英语:Ethnic enclave)

族群利益集团(英语:Ethnic interest group)

族群多数(英语:Ethnic majority)

族群媒体(英语:Ethnic media)

族群色情作品(英语:Ethnic pornography)

族群主题乐园(英语:Ethnic theme park)

Ethnoburb(英语:Ethnoburb)

族群政治(英语:Ethnocracy)

族群电影(英语:Ethnographic film)

族群村落(英语:Ethnographic village)

土著权利(英语:Indigenous rights)

中阶少数民族(英语:Middleman minority)

少数人权利

模范少数族裔

多元族群国家(英语:Multinational state)

意识形态和种族冲突

遗传工程武器

种族清洗

种族仇恨

族群笑话

族群民族主义

族群裙带(英语:Ethnic nepotism)

族群惩罚(英语:Ethnic penalty)

族群诋毁语列表(英语:List of ethnic slurs)

族群刻板印象

民族恐怖主义

民族优越感

种族文化灭绝

族群象征主义(英语:Ethnosymbolism)

土著主义(英语:Indigenism)

活跃的分离主义运动列表

仇外

规范控制

AAT: 300250435

GND: 4220764-2

J9U: 987007555583605171

LCCN: sh85045187

LNB: 000060934

NDL: 00567705

NKC: ph120007

取自“https://zh.wikipedia.org/w/index.php?title=族群&oldid=81828366”

分类:​族群民族学人类学隐藏分类:​含有英语的条目含有古希腊语的条目含有拉丁语的条目包含AAT标识符的维基百科条目包含GND标识符的维基百科条目包含J9U标识符的维基百科条目包含LCCN标识符的维基百科条目包含LNB标识符的维基百科条目包含NDL标识符的维基百科条目包含NKC标识符的维基百科条目

本页面最后修订于2024年3月9日 (星期六) 06:13。

本站的全部文字在知识共享 署名-相同方式共享 4.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款)

Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。

维基媒体基金会是按美国国内税收法501(c)(3)登记的非营利慈善机构。

隐私政策

关于维基百科

免责声明

行为准则

开发者

统计

Cookie声明

手机版视图

开关有限宽度模式

族群(同一地点同一种生物所形成的团体)_百度百科

一地点同一种生物所形成的团体)_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心族群是一个多义词,请在下列义项上选择浏览(共2个义项)展开添加义项族群播报讨论上传视频同一地点同一种生物所形成的团体收藏查看我的收藏0有用+10族群(英语:Ethnic group或ethnicity)是指人类历史以来区分我族及“他者”的分类方式之一。民族可能因历史及时空环境,基于历史、文化、语言、地域、宗教、血缘祖先认同、行为、生物/外貌特征而形成“一群”与其它有所区别的群体。这些区别我者和他者的民族性(英语:ethnicity)特质可能包括“客观”及“主观”(如认知和感情的成分)。中文名族群外文名Ethnic Group/Ethnicity/Population名族学指地理上靠近、语言上相近定    义同一地点同一种生物所形成的团体比    如整个地球为其讨论的范围划    分居住地或祖籍地对人群地归类。目录1定义▪定义一▪定义二2族群划分3学者观点4都市族群定义播报编辑定义一族群在民族学中指地理上靠近、语言上相近、血统同源、文化同源的一些民族的集合体,也称族团。 [1]定义二族群族群是指在同一时间同一地点同一种生物所形成的团体。比如说,以整个地球为其讨论的范围时,则人类的族群以现阶段而言是由七十亿人口所组成的。如果我们以台湾为一地理的范围来看,则在此时台湾的人类族群只有由两千三百万人口所组成的团体。台湾的人类族群是属于整个地球人类族群的一部份,我们又称其为地球人类族群的subpopulation。所以以一个大的地理范围所定义的族群,又可以因为讨论的地理范围而分成数各小的次族群,就以人类的族群而言,如果我们以每一国家的疆界为区隔,则地球上有多少国家就会有多少次族群。同样的我们也可以在次族群中再次的以地理的区隔来划分更多的次族群,比如说居住在台北市的台湾人类族群的次族群,或是居住在台中的台湾人类族群的次族群,当然这些次族群也同样是属于地球人类族群的次族群。地球上的其他的物种所组成的族群关系,就像是人类族群一般,可以大至包含全球的同一物种的所有个体,也可能只由一个动物园圈养范围内的数只动物或植物园中的数棵植物。但是不论所讨论的族群组成的份子是多还是少,由于族群是由同种生物、在同一时间、同一的地点所组成的,所以同一族群中的各个生物个体都有机会经由有性生殖的过程进行基因的交换,换句话说就是,在同一族群中的所有个体的所有基因都是可为该族群中所有同种生物所能共享的。就是因为每个个体所拥有的基因都是该族群各个份子所共享的,所以我们就称一族群中所有基因的集合为基因池(gene pool)。所以有时又会说,凡是可以共享同一基因池的所有个体的集合就是一族群。族群划分播报编辑按居住地对人群分类:如海外华人、湖南人、台湾人、北京人则多以出生地、居住地或祖籍地对人群地归类。按宗教信仰对人群分类,如穆斯林即指信仰伊斯兰教的信众;从民族学上,一个民族如果多数人信仰伊斯兰教,可以被认为属于伊斯兰民族,属于对阿拉伯人或以信仰伊斯兰教为主的民族称谓。一个民族通常包含多个族群。一个族群通常包含多个民系。学者观点播报编辑人类学学者丹溪草所著的《人类命运:变迁与规则》中认为“族群”是家国的血脉、是民族复兴的根基。 [2]人类族群在远古的动物世界中“属于比较边缘的种群”。但生存环境却并非现代人想象的那样“十分恶劣”——“诸如此类的认知往往都是我们基于现在生活环境比较下的认知”。 [3]都市族群播报编辑H族:2012年产生的H族代表的自由、奔放、舒适、健康的生活方式,已经攀上精英视界高峰,渐形成为无与伦比的圈子时尚。横跨60后、70后、80后,覆盖海归学子、华人华侨、企业家、职业股民、炒房者、金领、创业者、设计师、建筑师、草根明星、意见领袖、演艺明星等人群H族所倡导的生活方式,也叫安华生活,以High、Healthy、Honest、Harmony、Honey、Hope、Handsome为主要特征,产生于安华卫浴的客户群体。H族在成长过程中接受良好的教育,深受北美文化的影响,在了解中国历史的基础,喜欢潜心钻研美国等发达国家的领先产品和技术,看北美大片,追求科技、自由、时尚、舒适、健康的高品质生活。H族以中产阶级、高净值人群、富豪等精英为主,不仅提倡和坚持奋斗、拼搏、不断追求人生价值实现的人生,而且提倡安逸舒适、自由奔放、简约优雅、精致唯美、豪放大气、先进科技的生活状态,崇尚与世界接轨、健康正直、满怀信心希望、收获幸福的生活态度,强调“可持续的生活方式”。金牌达人:在中产阶级、精英人士,或者是3A族中流行一种积极乐观的金质生活,另一种说法则是金牌卫浴式的生活方式,来自于金牌卫浴的主张“品鉴金质人生”,他们的特征是追求美好生活,不怕艰难、不怕劳累、不怨天不尤人,一直信念坚定、努力奋斗寻找成功方法和美好生活的人,他们信奉美好生活的金牌就在前方,当然,很多人成功实现了自己的梦想,过上了金质生活。金牌达人这个群体所跨越的年龄阶段、职业背景都很大,既有60后、70后的富一代,也有80后、90后的富二代、创一代,知识分子、企业家、经理人、职业股民、炒房者、高级白领、创业者、设计师、建筑师、演艺明星、草根红人、知名写手、海归华侨等,都可能是金牌达人中的一员。金牌卫浴认为,“金牌达人”代表在创造和享受金质生活方面很有专长的人士,无论有钱与无钱,他们都能创造出精致、时尚、舒适、环保的金质生活。这一主张同金牌卫浴“品鉴金质人生”的品牌口号密切吻合,代表了积极乐观的奋斗精神、一种永不退缩的精神、一种为追求美好生活而坚持不懈的信念,这种精神同样是金牌卫浴企业文化的核心构成。慢活族:快生活的反对者,提倡慢工作,慢运动,慢阅读。慢活并不是蜗牛化,而是追求平衡,该快则快,能慢则慢。放慢速度,关注心灵成长,动手劳动,注意环保。步行上下班,改掉性急的毛病,远离喧嚣的人群,同时也有益健康。奔奔族:奔波、奔跑、奔放,他们自认为在奔向生活,别人看来只是在疲于奔命。他们一路嚎叫地奔跑在事业的道路上;同时他们又是中国社会压力最大的族群,身处于房价高、车价高、医疗费用高的“三高时代”,时刻承受着压力,爱自我宣泄表达对现实抗争。乐活族:乐观、包容,倡导积极乐观、健康环保的生活,通过消费、透过生活,支持环保、做好事,自我感觉好;他们身心健康,每个人也变得越来越靓丽、有活力。这个过程就是:Dogood、Feelgood、Lookgood(做好事,心情好,有活力)。相亲族:生活圈子不出办公室,却渴望与隔壁写字楼的人结婚。他们每周相亲2、3次,约会控制在10分钟左右,追求的是过程,不是结果。维客:崇尚共同创作,如编写字典、编写百科。摩浴族:喜欢享受现代的沐浴生活,家里都会有一台浴缸。寻觅属于自己的轻松生活,把沐浴当成一项享受的事情,从而获得身心的放松。这个人群摆脱了以往的麻木生活,开始对生活与工作充满激情,他们的头脑开始变得富有创意,他们的目光开始变得长远,他们的理想变得充实。从沐浴中获取生活的灵感,这就是缘自金牌卫浴的摩浴族。小私:喜欢享受私人服务并拥有私人服务的人,比如私人保姆、私人律师、私人医生、私人美容师、私人秘书、私人生活顾问。月光族:将每月赚的钱都用光、花光的人,月光族一般都是年轻一代,他们与父辈勤俭节约的消费观念不同,喜欢追逐新潮,扮靓买靓衫,只要吃得开心,穿得漂亮。想买就买,根本不在乎钱财。比一个月花光工资的月光族更糟的,叫星光族与日光族。SOHO族:在家工作,家与公司(工作)合而为一,工商部门和税局需要重点监控的人。威客:“我帮人人,人人帮我”,网上出售个人智慧、知识、专业特长与创意点子,也可以是问答平台上的问题解决者们。换客:以物易物的人们——互联网是他们的跳蚤市场,只有需要“别针换别墅”的人才走上街头。套牢族:用生活自由买股票的人,追新族(爱买新股者)可能是他们的前身。毕婚族:认为婚姻是职业规划的一部分,大学毕业的出路之一就是结婚———对方工作的稳定性、收入情况都是爱情之前的标准。本本族:对学历证、技能证、等级证等证书相当热爱和迷信,让他们成为知识的奴隶。考碗族:他们的兴盛与官僚体制的兴盛有关。公务员是金饭碗,他们要吃这碗饭。号哭族:压力无处宣泄或情感冷漠,不得不在周六抱团,靠看肥皂剧或朗诵诗歌去抱头痛哭的人。NONO族:他们的存在是对小资生活的双重否定———对虚伪说NO,对做作说NO,对跟风说NO,对千人一面的品牌说NO。尼特族:不升学、不就业、不进修,不参加就业辅导,无所事事足以概括其人生。漂移族:解开领带、从办公室走出来的时间都用来飙车。成为赛车高手是一个梦想,但看《头文字D》是不够的。LOMO族:表面上只是选了与众不同的LOMO相机去拍自己,实际上在选择与别不同的视角去过日子。候鸟族:白天乘坐公交车、地铁、私家车奔波几十公里从郊外赶到市中心,然后在晚上一脸疲态地赶回去。烧包族:泛指那些出手阔绰,喜欢个性消费、超前消费的人。口头禅是“我不是想买这件东西,我只是想买我想买这件东西时的心情”。99族:可悲的完美主义者—拥有再多从来不满足,拼命工作只为了在获得99后,再获得额外的那个“1”,往往生活得很累、很不值。装嫩族:年龄超过30岁、爱穿显嫩的衣服、爱穿球鞋、爱泡夜店。以为自己是年轻人,实际上年华已逝,快近中年。草莓族:一碰到压力就崩溃的人。像草莓一样一压就扁,近亲是“柿子族”。伪族:饭桌上夸夸其谈的话题发起者。自以为精通电影、棒球甚至航天技术,其实是不懂装懂。捧车族:油价上涨、能源危机、城市交通拥堵、停车场收费昂贵,一些人宁可把车“捧”起来闲置,把自己的私家车从星期一放到星期五,星期六才能去郊外溜溜。博客:原来的解释很简单,写博客、写微博的人。后来被划分了名人与草根、商业与非商业、职业与非职业。超女/快男:选秀时代的成功学,由连续几年的全国选秀活动而兴起,有欲望的快男超女,而不是清纯的少男少女。隐婚族:真正明白办公室社交的人———隐藏已婚事实,可以和同事泡夜场、谈恋爱;反正不会和同事成为朋友,或者结婚。干物女:“像香菇、干贝一样干巴巴“的女人。生活不拘小节、下班后直接回家、远离恋爱、口头禅是“这样做最轻松”———在办公室妆容整齐,回家却穿着有破洞的运动服。哈X族:迷恋某些东西的人,包括哈韩、哈日、哈猫、哈哈(哈利·波特)……哈字来自满语“hadaba“,意思是拍马屁和献媚。对,他们干的就是这个。3A族:有车、有房、有家,相当于小资,也是中产。蜗蜗族:社会压力的最佳适应者。特征是玩命和玩乐———工作日顶住压力、拿下高薪,休息日自由自我、痛快享乐。淘宝族:坚信淘宝网上可以得到生活的一切或一切的生活———网络拍卖的少林秘笈、原味内裤和坦克,证明了这一点。拍客:用自己手中的手机、数码相机或数码摄像机记录生活,这就是拍客。拍客们总是不忘在工作之余,在生活中,在旅行中,用镜头记录下他们的所思所想。拍客妇孺皆是,老少皆宜,谁都能做拍客。辣奢族:奢侈品是人生必经的甜酸苦辣,对名牌的热爱是辣,加班的时候是酸,吃方便面蓄钱是苦,买到限量版LV包包是甜。酷抠族:酷抠族未必贫穷,也不是守财奴,他们具有较高的学历,不菲的收入。酷抠族精打细算不是吝啬,而是一种节约的方式。喜欢高质量、幽雅的生活,具有很好的审美观眼光和高雅的生活品位。穷忙族:越穷越忙,越忙越穷。拼客:天赋是整合资源,将无偿使用他人车辆理解为节约、快乐、沟通与交友;拼房、拼车、拼网、拼卡。御宅族:SOHO族的反义词,SOHO族在家工作,他们在家不工作。晒客:拿工资、疾病、女朋友来晒,用隐私来换发言权。国贸男/张江男:偶然也被称为“水晶凤凰精英男”。丁克族:只是单独,而不是孤独,老无所依就是指这种人。背包族:背包族指背包进行旅行的人。他们是热爱大自然和自由的理想主义者,背起背包,带上睡袋和日常用品,手拿一张地图就可以开始一个人的旅行。他们也是一群怀抱理想独自上路到处流浪看世界的人,旅行是生命的又一种延续。极客:灵魂和生活都在网上的人,当然也富有智慧。沙发客:缘起于美国,喜欢旅游包括出国游,与同为沙发客的人群互相提供住所,并友情提供当地美景、美食的游历,对传统的酒店式旅游的挑战方式。M-zone人: 我的地盘我做主,但沦为中国电信的活广告,相当有影响力。I族:奉乔布斯为生活方式教主,自以为戴上白色耳机、捧着IPAD、裤兜里插着IPHONE,就与世隔绝。也叫苹果控。向日葵族会善于发现微小幸福,在“向日葵”族的概念里,敏感与细腻不完全代表着多愁善感,对微小快乐的敏感其实是幸福的来源之一。并不是每个人的生活都能比戏剧更精彩,蕴藏在平淡里的小幸福才更值得珍惜。向日葵族没有太大野心,“知足常乐”一定是他们信奉的座右铭之一。他们相信欲望越少,越容易快乐。无法掌控的事情,带来的压力只能选择承受;可以掌控的事情,他们往往不会主动给自己加压力。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

ethnic 和 racial 的区别是什么? - 知乎

ethnic 和 racial 的区别是什么? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册英语ethnic 和 racial 的区别是什么?关注者11被浏览16,232关注问题​写回答​邀请回答​好问题​添加评论​分享​3 个回答默认排序知乎用户http://www.differencebetween.net/science/nature/difference-between-ethnicity-and-race/维基百科中 ethic group 条目下http://en.wikipedia.org/wiki/Ethnic_group 第三小条 ethnicity and race.编辑于 2012-06-28 15:53​赞同 12​​2 条评论​分享​收藏​喜欢收起​SummerLiuDaydreamer​ 关注ethnic和racial都是表示 种族的 。不过,ethnic多用于表示文化方面,比如国籍、文化习俗、语言、信仰等等。而racial多指人的外在特殊,比如肤色、眼睛颜色、头发颜色等等。发布于 2012-06-28 17:39​赞同 12​​1 条评论​分享​收藏​喜欢收起​​

什么是多样性,平等与包容性(DEI)? - 知乎

什么是多样性,平等与包容性(DEI)? - 知乎首发于员工体验切换模式写文章登录/注册什么是多样性,平等与包容性(DEI)?hrtechchinaHR\HR科技What is Diversity, Equity, and Inclusion (DEI)?多样性是指存在差异,包括种族,性别,宗教,性取向,种族,国籍,社会经济地位,语言,(残疾)能力,年龄,宗教信仰或政治观点。在该领域的从业人员中,现在和现在仍然人数不足,在整个社会中被边缘化。公平正在促进程序,过程和机构或系统在资源分配中的正义,公正和公平。解决公平问题需要了解我们社会中结果差异的根本原因。包容性是确保多元化的人真正感受到和/或受到欢迎的结果。当您,您的机构和您的计划真正吸引所有人时,才能实现包容性结果。在某种程度上,不同的个人能够充分参与组织或组织内的决策过程和发展机会。来源:Diversity, Equity, and Inclusion发布于 2021-01-06 16:16社会学多样性平等​赞同 30​​添加评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录员工体验员工体验是未来HR必须关注的

Just a moment...

a moment...Enable JavaScript and cookies to conti

The preeminence of ethnic diversity in scientific collaboration | Nature Communications

The preeminence of ethnic diversity in scientific collaboration | Nature Communications

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain

the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in

Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles

and JavaScript.

Advertisement

View all journals

Search

Log in

Explore content

About the journal

Publish with us

Sign up for alerts

RSS feed

nature

nature communications

articles

article

The preeminence of ethnic diversity in scientific collaboration

Download PDF

Download PDF

Article

Open access

Published: 04 December 2018

The preeminence of ethnic diversity in scientific collaboration

Bedoor K. AlShebli 

ORCID: orcid.org/0000-0003-1775-51621, Talal Rahwan1,2 & Wei Lee Woon 

ORCID: orcid.org/0000-0002-6155-17411,3 

Nature Communications

volume 9, Article number: 5163 (2018)

Cite this article

34k Accesses

231 Citations

714 Altmetric

Metrics details

Subjects

Computational scienceScientific community

AbstractInspired by the social and economic benefits of diversity, we analyze over 9 million papers and 6 million scientists to study the relationship between research impact and five classes of diversity: ethnicity, discipline, gender, affiliation, and academic age. Using randomized baseline models, we establish the presence of homophily in ethnicity, gender and affiliation. We then study the effect of diversity on scientific impact, as reflected in citations. Remarkably, of the classes considered, ethnic diversity had the strongest correlation with scientific impact. To further isolate the effects of ethnic diversity, we used randomized baseline models and again found a clear link between diversity and impact. To further support these findings, we use coarsened exact matching to compare the scientific impact of ethnically diverse papers and scientists with closely-matched control groups. Here, we find that ethnic diversity resulted in an impact gain of 10.63% for papers, and 47.67% for scientists.

Similar content being viewed by others

The inverted U-shaped relationship between knowledge diversity of researchers and societal impact

Article

Open access

03 November 2022

Gaofeng Wang, Yetong Gan & Haodong Yang

Quantifying progress in research topics across nations

Article

Open access

23 March 2023

Kimitaka Asatani, Sumihiro Oki, … Ichiro Sakata

Science’s greatest discoverers: a shift towards greater interdisciplinarity, top universities and older age

Article

Open access

15 February 2024

Alexander Krauss

IntroductionDiversity is highly valued in modern societies1,2,3,4,5,6. Social cohesion, tolerance, and integration are linked to tangible benefits including economic vibrancy7,8 and innovativeness5,9,10,11. Far from being an abstract ideal, this conviction has guided many governmental and hiring policies and can have broad and long-lasting effects on society12,13. However, diversity is a complex issue, as groups can be diverse in terms of various attributes, such as ethnicity, gender, age, and socioeconomic background. It is also unclear if all forms of diversity are beneficial. For instance, ethnic density has been associated with positive outcomes in terms of health14,15, while ethnic polarization has a negative effect on economic development16. Furthermore, diversity can be a divisive topic that is clouded by emotion, partisan loyalties, and political correctness, all of which can hinder impartial discussions17. The factors above strongly motivate an objective study on the value of diversity, and on whether more diverse groups achieve greater success.One domain in which this question can be effectively addressed is academia18,19. The structure of academic collaboration is observable via co-authorships, which frequently involve scientists from different locations, disciplines and backgrounds20,21. Furthermore, academic output has an objective, widely accepted measure—citation count22,23. This amenability to analysis has already attracted attempts at identifying the factors which underlie success in academia, an enterprise known as the Science of Science24. Although many such factors have been studied, including gender25, academic age26, team size27, interdisciplinarity28, ethnicity29, and affiliation30,31, the study of these factors is extremely complex and many questions remain unanswered.Our study seeks to address this shortcoming from a number of hitherto unexplored perspectives. Firstly, we compare homophily in scientific collaborations from the perspectives of age, gender, affiliation, and ethnicity. We find clear signs of homophily in the cases of ethnicity, gender, and affiliation. However, in only one case, ethnicity, was homophily was found to be increasing steadily over time. Secondly, we examine the relationship between various classes of diversity and research impact at the level of scientific fields. Remarkably, we found that ethnic diversity is most strongly associated with scientific impact. Thirdly, we compare the benefits of diversity on groups vs. individuals, and find that the former outweighs the latter. Finally, we study the evolution and effect of diversity over time, team size, and number of collaborators, and verify that the above findings persist across all of these dimensions. The results of these multiple angles of analysis are combined to form a far richer picture of diversity than has been possible in the past.ResultsExploring homophilyA natural starting point for our study of diversity is to establish the extent to which homophily32 exists in academia—i.e., whether scientists tend to collaborate more frequently with similar others—which would lead to an overall lack of diversity in scientific collaborations. We use the Microsoft Academic Graph dataset (available at: https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/), and analyze 1,045,401 multi-authored papers (see Supplementary Figure 1 for the distribution of papers by year), written by 1,529,279 scientists, spanning eight main fields and 24 subfields of science. We analyzed diversity in terms of these five attributes: ethnicity (eth), discipline (dsp), gender (gen), affiliation (aff), and academic age (age); see Supplementary Note 1. Here, the abbreviations in parentheses are used in subsequent mathematical expressions to indicate the associated attribute. These attributes reflect many technical and social factors that influence teamwork and collaboration. Affiliation indicates the geographic location, and may even reflect the way collaborative work is carried out—from the style and culture of collaboration to its mundane details, such as the medium used to collaborate, e.g., face-to-face interactions vs. telecommunication or email. Academic age is not only indicative of the amount of experience that a scientist has, but is also typically associated with actual age. Discipline may reflect a scientist’s substantive knowledge and his/her acquired skills through training, as well as the culture in which collaborative work is carried out. Finally, ethnicity and gender may play a role in shaping scientists’ social identities, knowledge, and biases. To quantify diversity in terms of any of the aforementioned attributes, we use the Gini Impurity33, resulting in the following group diversity indices, \(d_{{\mathrm {eth}}}^{\mathrm {G}}\), \(d_{\mathrm {{age}}}^{\mathrm {G}}\), \(d_{{\mathrm {gen}}}^{\mathrm {G}}\), \(d_{{\mathrm {dsp}}}^{\mathrm {G}}\) and \(d_{{\mathrm {aff}}}^{\mathrm {G}}\) (an alternative diversity measure was also considered; see Supplementary Note 2 and Supplementary Figure 2).To explore homophily, we generate different randomized baseline models whereby a particular attribute—be it ethnicity, gender, affiliation, or academic age—is shuffled. For example, in the case of ethnicity, this process is akin to creating a universe in which ethnicity is disregarded in the selection of co-authors, while retaining other criteria. To preserve the conditional distributions of the ethnicities, the shuffling process is constrained to only occur between authors of papers that have the same subfield, publication year, and number of authors; for full details, see Supplementary Note 3. This way, for every paper p in the real dataset, there exists a matching paper p′ in the randomized dataset that may differ from p in terms of ethnic diversity, but is identical to p in terms of gender, affiliation, academic age, citations, publication year, and number of authors per paper. Importantly, while such a baseline model may produce homogeneous groups, the emergence of such groups is purely the result of random chance rather than homophily. As such, by comparing the real dataset with this baseline model, we can determine whether homophily exists, and if so, quantify the degree to which it is spread across academia. Figure 1a compares our real dataset with the randomized baseline model in terms of the cumulative distributions of \(d_x^{\mathrm {G}}:x \in \{ {\mathrm {eth,age,gen,aff}}\}\). As can be seen, for x ∈ {eth, gen, aff}, groups with low \(d_x^{\mathrm {G}}\) are more common in reality than would be expected by random chance, highlighting the fact that homophily does indeed exist in academia in terms of ethnicity, gender, and affiliation. However, for x = age, the opposite was observed (see Supplementary Figures 3–6 for subfield-specific distributions). These observations persist, regardless of the publication year (Fig. 1b), and the number of authors per paper (Fig. 1c). The temporal trends observed in Fig. 1b are particularly intriguing. For \(d_{{\mathrm {eth}}}^{\mathrm {G}}\), while the population of scientists is becoming more ethnically diverse (see the steady increase in the red line), this trend is not reflected in the actual coauthor groupings, implying that ethnic homophily is steadily increasing. For \(d_{{\mathrm {age}}}^{\mathrm {G}}\), the actual level of diversity is greater than would be expected by random chance; this pattern is regularly observed in academia, e.g., consider the many publications resulting from advisor–advisee collaborations. For \(d_{{\mathrm {gen}}}^{\mathrm {G}}\), although gender homophily continues to exist, it steadily decreases over time, suggesting that women are playing an ever greater role in scientific endeavors. Finally, for \(d_{{\mathrm {aff}}}^{\mathrm {G}}\), there is a marked decrease in affiliation homophily around the 1990s; this is consistent with the jump in multi-university collaborations in the 1990s due to the widespread of the Internet and other technologies that facilitate collaboration across geographically distant scientists30.Fig. 1Exploring homophily in real vs. randomized data. Each column corresponds to a different class of diversity, and each row presents the results of a specific set of experiments whereby \(d_x^{\mathrm {G}}:x \in \{{\mathrm { {eth,age,gen,aff}}}\}\) in real data is compared against randomized data. a Cumulative distributions of \(d_x^{\mathrm {G}}\). b Change in mean diversity \(\langle d_x^{\mathrm {G}}\rangle\) over time. c Mean diversity \(\langle d_x^{\mathrm {G}}\rangle\) for papers with different number of authorsFull size imageThe link between diversity and scientific impactHaving explored homophily in academia, we now study the effects of homophily (and diversity) on research impact, measured by the number of citations received within 5 years of publication, denoted by \(c_5^{\mathrm {G}}\) (see Supplementary Note 4 and Supplementary Figure 7). Using the same dataset and notation described earlier, we study the relationship between a subfield’s diversity and its academic impact. Here, we distinguish between two notions of diversity. The first is where the unit of analysis is a paper’s set of authors, while the second is where the unit of analysis is an individual scientist’s entire set of collaborators. We refer to the former as group diversity, and to the latter as individual diversity; see Fig. 2 for an illustration comparing the two notions.Fig. 2Group vs. individual diversity. For any given class of diversity, x ∈ {eth, age, gen, dsp, aff}, differences in color represent differences in terms of x. The group diversity index \(d_x^{\mathrm {G}}\) of Paper A is higher than that of Paper B. The individual diversity index of Scientist C is higher than that of Scientist DFull size imageFor each subfield, Fig. 3a depicts the mean group diversity indices, \(\langle d_x^{\mathrm {G}}\rangle :x \in \{ {\mathrm {eth,age,gen,dsp,aff}}\}\), against the mean 5-year citation count, \(\langle c_5^{\mathrm {G}}\rangle\), taken over papers in that subfield (notation summary and formal definitions are in Supplementary Table 1 and Supplementary Note 2, respectively). Remarkably, we find that a subfield’s ethnic diversity is the most strongly correlated with impact (r = 0.77); the positive correlation persists even when the subfields are studied in isolation (Supplementary Figures 8 and Supplementary Table 2), regardless of the number of authors per paper (Supplementary Figure 9). These findings are further supported by the regression analysis in Table 1. While these findings do not imply causation, it is still suggestive that one can largely predict scientific impact based solely on average ethnic diversity, especially given that ethnicity is arguably unrelated to technical competence.Fig. 3Group and individual diversity vs. impact in each subfield. In each subplot, the points correspond to subfields, the color indicates the main field, while the solid line and the shaded area represent the regression line and the 95% confidence interval, respectively. Each regression has also been annotated with the corresponding Pearson’s r and p values. a For each subfield, the subplots depict the mean group diversity indices, \(\langle d_{{\mathrm {eth}}}^{\mathrm {G}}\rangle\), \(\langle d_{{\mathrm {age}}}^{\mathrm {G}}\rangle\), \(\langle d_{{\mathrm {gen}}}^{\mathrm {G}}\rangle\), \(\langle d_{\mathrm {{dsp}}}^{\mathrm {G}}\rangle\) and \(\langle d_{\mathrm {{aff}}}^{\mathrm {G}}\rangle\), against the mean 5-year citation count, \(\langle c_5^{\mathrm {G}}\rangle\), taken over papers in that subfield. b For each subfield, the subplots depict the mean individual diversity indices, \(\langle d_{\mathrm {{eth}}}^{\mathrm {I}}\rangle\), \(\langle d_{\mathrm {{age}}}^{\mathrm {I}}\rangle\), \(\langle d_{\mathrm {{gen}}}^{\mathrm {I}}\rangle\), \(\langle d_{\mathrm {{dsp}}}^{\mathrm {I}}\rangle\) and \(\langle d_{\mathrm {{aff}}}^{\mathrm {I}}\rangle\), against the mean 5-year citation count, \(\langle c_5^{\mathrm {I}}\rangle\), taken over scientists in that subfieldFull size imageTable 1 Regression analyses of diversity classes on academic impactFull size tableHaving studied group diversity, we now move our attention to individual diversity. Here, we analyze scientists with at least 10 collaborators each, amounting to a total of 5,103,877 collaborators over 9,472,439 papers (see Supplementary Table 3 for a summary of all filters applied on the dataset). For each subfield, Fig. 3b depicts the mean individual diversity indices, \(\langle d_x^{\mathrm {I}}\rangle :x \in \{ {\mathrm {eth,age,gen,dsp,aff}}\}\), against the mean 5-year citation count, \(\langle c_5^{\mathrm {I}}\rangle\), taken over scientists in that subfield. As can be seen, a subfield’s ethnic diversity is again the most strongly correlated with impact (r = 0.55), even when the subfields are studied in isolation (Supplementary Figure 10 and Supplementary Table 4).The above results highlight a potential dysfunction. While homophily was observed for ethnicity, affiliation and gender, the only attribute for which it was found to be increasing over time was ethnicity, which seems strange given the apparent preeminence of ethnic diversity. Motivated by this observation, we further explore the relationship between ethnic diversity and scientific impact in the randomized universe used earlier in Fig. 1. Recall that, in such a universe, ethnicity is excluded as a criterion for selecting co-authors while the other factors are preserved. Hence, it stands to reason that any differences in impact between the randomized and real datasets can be attributed to ethnic diversity. To examine these differences, we partitioned the papers into two categories, labeled as diverse \(\left( {d_{\mathrm {{eth}}}^{\mathrm {G}} > \tilde d_{\mathrm {{eth}}}^{\mathrm {G}}} \right)\) and non-diverse \(\left( {d_{\mathrm {{eth}}}^{\mathrm {G}} \le \tilde d_{\mathrm {{eth}}}^{\mathrm {G}}} \right)\), where the tilde denotes the median. The scientists were similarly partitioned into diverse \(\left( {d_{\mathrm {{eth}}}^{\mathrm {I}} > \tilde d_{\mathrm {{eth}}}^{\mathrm {I}}} \right)\) and non-diverse \(\left( {d_{\mathrm {{eth}}}^{\mathrm {I}} \le \tilde d_{\mathrm {{eth}}}^{\mathrm {I}}} \right)\). We find that the diverse consistently outperforms the non-diverse, regardless of the year of publication (Fig. 4e), the number of authors per paper (Fig. 4g), and the number of collaborators per scientist (Fig. 4i). We replicated these plots using the randomized, instead of the real, dataset (Fig. 4f, h and j). As can be seen, the performance gap between the diverse and non-diverse almost entirely disappears in the randomized dataset, suggesting that the observed impact gains in the real dataset could indeed be attributed to ethnic diversity. Note that, in the real dataset, a large proportion of papers have \(d_{\mathrm {{eth}}}^{\mathrm {G}} = 0\) (see Fig. 4a), and a large proportion of scientists have \(d_{\mathrm {{eth}}}^{\mathrm {I}} = 0\) (see Fig. 4c). As such, the observed performance gap between the diverse and the non-diverse could be predominantly due to these papers and scientists being less impactful than their counterparts whose \(d_{\mathrm {{eth}}}^{\mathrm {G}} > 0\) and \(d_{\mathrm {{eth}}}^{\mathrm {I}} > 0\), respectively. To determine whether this is the case, we replicated the analysis of papers but after excluding those with \(d_{\mathrm {{eth}}}^{\mathrm {G}} = 0\), and likewise replicated the analysis of scientists but after excluding those with \(d_{\mathrm {{eth}}}^{\mathrm {I}} = 0\); see Supplementary Figure 11. As can be seen, even after this exclusion, the diverse mostly outperform the non-diverse, regardless of publication year, number of authors per paper, and number of collaborators per scientist.Fig. 4The relationship between ethnic diversity and impact. a Distribution of \(d_{\mathrm {{eth}}}^{\mathrm {G}}\) in real data. Papers were partitioned into two categories: diverse (highlighted in the darker tones, with \(d_{\mathrm {{eth}}}^{\mathrm {G}} > \tilde d_{\mathrm {{eth}}}^{\mathrm {G}}\)) and non-diverse (highlighted in the lighter tones, with \(d_{\mathrm {{eth}}}^{\mathrm {G}} \le \tilde d_{\mathrm {{eth}}}^{\mathrm {G}}\)), where the tilde denotes the median. b The same as (a), but for randomized data. c and d The same as (a, b), respectively, but with \(d_{\mathrm {{eth}}}^{\mathrm {I}}\) instead of \(d_{\mathrm {{eth}}}^{\mathrm {G}}\). e \(\langle c_5^{\mathrm {G}}\rangle\) against publication year in real data. f The same as (e), but for randomized data. g \(\langle c_5^{\mathrm {G}}\rangle\) against number of authors per paper in real data. h The same as (g), but for randomized data. i \(\langle c_5^{\mathrm {I}}\rangle\) against number of collaborators per scientist in real data. j The same as (i), but for randomized dataFull size imageInferring causalityTo provide further evidence of the link between ethnic diversity and scientific impact, we use coarsened exact matching34, a technique typically used to infer causality in observational studies35. Specifically, it matches the control and treatment populations with respect to the confounding factors identified, thereby eliminating the effect of these factors on the phenomena under investigation. In our case, when studying group ethnic diversity, the treatment set consists of papers for which \(d_{\mathrm {{eth}}}^{\mathrm {G}} > P_{100 - i}\left( {d_{\mathrm {{eth}}}^{\mathrm {G}}} \right)\), and the control set of papers for which \(d_{\mathrm {{eth}}}^{\mathrm {G}} \le P_i\left( {d_{\mathrm {{eth}}}^{\mathrm {G}}} \right)\), where \(P_i\left( {d_{\mathrm {{eth}}}^{\mathrm {G}}} \right)\) denotes the ith percentile of \(d_{\mathrm {{eth}}}^{\mathrm {G}}\). This process is repeated using i = 10, 20, 30, 40, 50, corresponding to progressively larger gaps in ethnic diversity between the two populations. Thus, if ethnic diversity is indeed associated with increased scientific impact, we would expect to find a significant difference in impact between the two populations, and expect this difference to increase in tandem with the aforementioned gap in diversity. The confounding factors identified were the year of publication, number of authors, field of study, authors’ impact prior to publication, and university ranking. The same process was carried out for individual ethnic diversity, for which the confounding factors were academic age, number of collaborators, discipline, and university ranking; see Supplementary Note 5 and Supplementary Figures 12 and 13 for more details, and Supplementary Figure 14 for an illustration of how this process works on a given collection of papers. The results for group and individual ethnic diversities are summarized in Tables 2 and 3, respectively. As can be seen, increasing the diversity gap between the control and treatment populations is often accompanied by a greater difference in scientific impacts between the two populations. Remarkably, in the case of papers and scientists above the 90th percentile, the difference in scientific impact reaches 10.63% and 47.67%, respectively, compared to their counterparts below the 10th percentile. Clearly, these results do not suggest that diversity is the only causal factor. For example, one may argue that highly ranked universities tend to attract students from around the world and are more ethnically diverse as a result; indeed we verified that this was the case (see Supplementary Note 6 and Supplementary Figures 15 and 16). In such situations, coarsened exact matching is particularly useful precisely because it allows us to establish causality despite such effects.Table 2 Coarsened exact matching of group ethnic diversityFull size tableTable 3 Coarsened exact matching of individual ethnic diversityFull size tableInterplay between group and individual ethnic diversityFinally, we investigate the interplay between group ethnic diversity, \(d_{\mathrm {{eth}}}^{\mathrm {G}}\), and individual ethnic diversity, \(d_{\mathrm {{eth}}}^{\mathrm {I}}\). To this end, for each of the 1,045,401 papers in our dataset, we calculate \(d_{\mathrm {{eth}}}^{\mathrm {I}}\) averaged over the authors in that paper; we denote this as \(\left\langle {d_{\mathrm {{eth}}}^{\mathrm {I}}} \right\rangle _{\mathrm {{paper}}}\). This allows us to study the ways in which the two notions of diversity vary in the same paper. Indeed, as illustrated in Fig. 5, a paper can have high \(d_{\mathrm {{eth}}}^{\mathrm {G}}\) and at the same time have low \(\left\langle {d_{\mathrm {{eth}}}^{\mathrm {I}}} \right\rangle _{\mathrm {{paper}}}\), and vice versa. With this in mind, we studied the impact, \(\left\langle {c_5^{\mathrm {G}}} \right\rangle\), of papers falling in different ranges of \(d_{\mathrm {{eth}}}^{\mathrm {G}}\) and \(\left\langle {d_{\mathrm {{eth}}}^{\mathrm {I}}} \right\rangle _{\mathrm {{paper}}}\); see the matrix at the bottom-right corner of Fig. 5. Here, if we denote this matrix by A, and label the bottom row and leftmost column as 1, we find that \(\mathop {\sum}\nolimits_{i = 1}^4 A_{i,1} < \mathop {\sum}\nolimits_{i = 1}^4 A_{1,i}\) and \(\mathop {\sum}\nolimits_{i = 1}^4 A_{i,4} > \mathop {\sum}\nolimits_{i = 1}^4 A_{4,i}\). Hence, while it appears that both group and individual diversities can be valuable, the former seems to have a greater effect on scientific impact. In other words, having co-authors who are inclined to collaborate across ethnic lines (i.e., co-authors whose individual ethnic diversity is high) appears to be not as important as the mere presence of co-authors of different ethnicities (i.e., co-authors whose group ethnic diversity is high).Fig. 5The interplay between group and individual ethnic diversity. The top part of the figure illustrates an example of 4 papers. The authors of paper A have different ethnicities, but each has ethnically homogeneous collaborators. Then, one could argue that paper A has high \(d_{\mathrm {{eth}}}^{\mathrm {G}}\) but low \(\left\langle {d_{\mathrm {{eth}}}^{\mathrm {I}}} \right\rangle _{\mathrm {{paper}}}\). Similarly, paper B has low \(d_{\mathrm {{eth}}}^{\mathrm {G}}\) and low \(\left\langle {d_{\mathrm {{eth}}}^{\mathrm {I}}} \right\rangle _{\mathrm {{paper}}}\), paper C has low \(d_{\mathrm {{eth}}}^{\mathrm {G}}\) and high \(\left\langle {d_{\mathrm {{eth}}}^{\mathrm {I}}} \right\rangle _{\mathrm {{paper}}}\), and paper D has high \(d_{\mathrm {{eth}}}^{\mathrm {G}}\) and high \(\left\langle {d_{\mathrm {{eth}}}^{\mathrm {I}}} \right\rangle _{\mathrm {{paper}}}\). The matrix at the bottom-right corner represents the mean citation counts, \(\left\langle {c_5^{\mathrm {G}}} \right\rangle\), of papers falling in different ranges of \(d_{\mathrm {{eth}}}^{\mathrm {G}}\) and \(\left\langle {d_{\mathrm {{eth}}}^{\mathrm {I}}} \right\rangle _{\mathrm {{paper}}}\)Full size imageDiscussionTo summarize, this study is the first to cover five different classes of diversity, which allowed us to illuminate many interesting connections between diversity and scientific collaboration. It was also important to establish the occurrence of homophily, and this was achieved via a set of randomized baseline models. These were used to compare observed collaborations with simulated data where the attribute of interest was randomized while controlling for the relevant confounding variables. These comparisons revealed clear and consistent patterns of homophily in the cases of ethnicity, gender, and affiliation, and also revealed that ethnicity was the only attribute for which homophily is increasing over time. In the case of academic age, inverse homophily was found, i.e., scientists seem to prefer collaborating with individuals from different age groups, a possible reflection of the widely held practice of research students being mentored by, and collaborating with, more senior academics.Armed with these results, we shifted our focus to the effect of homophily (and diversity) on scientific impact. This analysis was conducted using a number of different analytical tools, including regression analysis, randomized baseline models, and coarsened exact matching. Broadly, we found that diversity was positively correlated with impact, though the statistical significance of the observed effect varied significantly depending on the class of diversity and field of study. Overall, discipline and affiliation diversity were the least correlated with impact, a surprising finding given the apparent importance of these attributes. Conversely, ethnic diversity had the strongest correlation, which is especially surprising since ethnicity is not as related to technical competence as the other classes mentioned.These findings have significant implications. For one, recruiters should always strive to encourage and promote ethnic diversity, be it by recruiting candidates who complement the ethnic composition of existing members, or by recruiting candidates with proven track records in collaborating with people of diverse ethnic backgrounds. Another implication is that, while collaborators with different skill sets are often required to perform complex tasks, multidisciplinarity should not be an end in of itself; bringing together individuals of different ethnicities—with the attendant differences in culture and social perspectives—could ultimately produce a large payoff in terms of performance and impact. To put it differently, intangible factors, such as team cohesion and a sense of esprit de corps should be considered in addition to technical alignment.The underlying message is an inclusive and uplifting one. In an era of increasing polarization and identity politics, our findings may positively contribute to the societal conversation and reinforce the conviction that good things happen when people of different backgrounds, cultures, and ethnicities come together to work towards shared goals and the common good.

Data availability

The details of all data and methods used are given in Supplementary Note 1.

ReferencesWagner, C. S. & Jonkers, K. Open countries have strong science. Nature 550, 32–33 (2017).Article 

ADS 

CAS 

Google Scholar 

Puritty, C. et al. Without inclusion, diversity initiatives may not be enough. Science 357, 1101–1102 (2017).Article 

ADS 

CAS 

Google Scholar 

Page, S. E. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (Princeton University Press, Princeton, 2008).Ager, P. & Brückner, M. Cultural diversity and economic growth: evidence from the US during the age of mass migration. Eur. Econ. Rev. 64, 76–97 (2013).Article 

Google Scholar 

Lee, N. Migrant and ethnic diversity, cities and innovation: firm effects or city effects? J. Econ. Geogr. 15, 769–796 (2014).Article 

Google Scholar 

Suedekum, J., Wolf, K. & Blien, U. Cultural diversity and local labour markets. Reg. Stud. 48, 173–191 (2014).Article 

Google Scholar 

Levine, S. S. et al. Ethnic diversity deflates price bubbles. Proc. Natl Acad. Sci. USA 111, 18524–18529 (2014).Article 

ADS 

CAS 

Google Scholar 

Herring, C. Does diversity pay?: race, gender, and the business case for diversity. Am. Sociol. Rev. 74, 208–224 (2009).Article 

Google Scholar 

Paulus, P. B., van der Zee, K. I. & Kenworthy, J. Cultural diversity and team creativity. In The Palgrave Handbook of Creativity and Culture Research, 57–76 (Palgrave Macmillan, London, 2016).Chapter 

Google Scholar 

Parrotta, P., Pozzoli, D. & Pytlikova, M. The nexus between labor diversity and firms innovation. J. Popul. Econ. 27, 303–364 (2014).Article 

Google Scholar 

Østergaard, C. R., Timmermans, B. & Kristinsson, K. Does a different view create something new? the effect of employee diversity on innovation. Res. Policy 40, 500–509 (2011).Article 

Google Scholar 

Brown, G. K. & Langer, A. Does affirmative action work: lessons from around the world. Foreign Aff. 94, 49 (2015).

Google Scholar 

Arcidiacono, P., Lovenheim, M. & Zhu, M. Affirmative action in undergraduate education. Annu. Rev. Econ. 7, 487–518 (2015).Article 

Google Scholar 

Alvarez, K. J. & Levy, B. R. Health advantages of ethnic density for african american and mexican american elderly individuals. Am. J. Public Health 102, 2240–2242 (2012).Article 

Google Scholar 

Das-Munshi, J., Becares, L., Dewey, M. E., Stansfeld, S. A. & Prince, M. J. Understanding the effect of ethnic density on mental health: multi-level investigation of survey data from england. BMJ 341, c5367 (2010).Article 

Google Scholar 

Montalvo, J. G. & Reynal-Querol, M. Ethnic diversity and economic development. J. Dev. Econ. 76, 293–323 (2005).Article 

Google Scholar 

Galinsky, A. D. et al. Maximizing the gains and minimizing the pains of diversity: a policy perspective. Perspect. Psychol. Sci. 10, 742–748 (2015).Article 

Google Scholar 

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N. & Malone, T. W. Evidence for a collective intelligence factor in the performance of human groups. Science 330, 686–688 (2010).Article 

ADS 

CAS 

Google Scholar 

Hong, L. & Page, S. E. Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proc. Natl Acad. Sci. USA 101, 16385–16389 (2004).Article 

ADS 

CAS 

Google Scholar 

Jia, T., Wang, D. & Szymanski, B. K. Quantifying patterns of research-interest evolution. Nat. Hum. Behav. 1, 0078 (2017).Article 

Google Scholar 

Deville, P. et al. Career on the move: geography, stratification, and scientific impact. Scientific Rep. 4, 4770 (2014).Sinatra, R., Wang, D., Deville, P., Song, C. & Barabási, A.-L. Quantifying the evolution of individual scientific impact. Science 354, aaf5239 (2016).Article 

Google Scholar 

Wang, D., Song, C. & Barabási, A.-L. Quantifying long-term scientific impact. Science 342, 127–132 (2013).Article 

ADS 

CAS 

Google Scholar 

Fortunato, S. et al. Science of science. Science 359, eaao0185 (2018).Article 

Google Scholar 

Nielsen, M. W. et al. Opinion: gender diversity leads to better science. Proc. Natl Acad. Sci. USA 114, 1740–1742 (2017).Article 

CAS 

Google Scholar 

Jones, B. F. & Weinberg, B. A. Age dynamics in scientific creativity. Proc. Natl Acad. Sci. USA 108, 18910–18914 (2011).Article 

ADS 

CAS 

Google Scholar 

Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of teams in production of knowledge. Science 316, 1036–1039 (2007).Article 

ADS 

CAS 

Google Scholar 

Uzzi, B., Mukherjee, S., Stringer, M. & Jones, B. Atypical combinations and scientific impact. Science 342, 468–472 (2013).Article 

ADS 

CAS 

Google Scholar 

Freeman, R. B. & Huang, W. Collaborating with people like me: ethnic coauthorship within the united states. J. Labor Econ. 33, S289–S318 (2015).Article 

Google Scholar 

Jones, B. F., Wuchty, S. & Uzzi, B. Multi-university research teams: Shifting impact, geography, and stratification in science. Science 322, 1259–1262 (2008).Article 

ADS 

CAS 

Google Scholar 

Adams, J. Collaborations: the fourth age of research. Nature 497, 557–560 (2013).Article 

ADS 

CAS 

Google Scholar 

McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001).Article 

Google Scholar 

Bishop, B. CM: Pattern Recognition and Machine Learning. J. Electron. Imag. 16, 140–155 (2013).Iacus, S. M., King, G. & Porro, G. Causal inference without balance checking: coarsened exact matching. Polit. Anal. 20, 1–24 (2012).Article 

Google Scholar 

Catalini, C., Lacetera, N. & Oettl, A. The incidence and role of negative citations in science. Proc. Natl Acad. Sci. USA 112, 13823–13826 (2015).Article 

ADS 

CAS 

Google Scholar 

Ambekar, A., Ward, C., Mohammed, J., Male, S. & Skiena, S. Name-ethnicity classification from open sources. In Proc. 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 49–58 (ACM, 2009).Ye, J. et al. Nationality classification using name embeddings. In Proc. 2017 ACM on Conference on Information and Knowledge Management, 1897–1906 (ACM, 2017).Download referencesAcknowledgementsWe thank Steven Skiena and his team for providing access to their Name Ethnicity Classifier tool36,37. We also thank Kinga Makovi for suggesting the use of coarsened exact matching for causal inference.Author informationAuthors and AffiliationsDepartment of Computer Science, Masdar Institute, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 54224, UAEBedoor K. AlShebli, Talal Rahwan & Wei Lee WoonComputer Science, New York University, Abu Dhabi, P.O. Box 129188, UAETalal RahwanExpedia Inc., 333 108th AVE NE, Bellevue, WA, 98004, USAWei Lee WoonAuthorsBedoor K. AlShebliView author publicationsYou can also search for this author in

PubMed Google ScholarTalal RahwanView author publicationsYou can also search for this author in

PubMed Google ScholarWei Lee WoonView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsB.K.A., T.R., and W.L.W. conceived and designed the experiments. B.K.A. and W.L.W. performed the coding of the experiments. B.K.A., T.R., and W.L.W. wrote the manuscript. B.K.A. and T.R. produced the figures and tables.Corresponding authorsCorrespondence to

Bedoor K. AlShebli, Talal Rahwan or Wei Lee Woon.Ethics declarations

Competing interests

The authors declare no competing interests.

Additional informationPublisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialSupplementary InformationPeer Review FileRights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissionsAbout this articleCite this articleAlShebli, B.K., Rahwan, T. & Woon, W.L. The preeminence of ethnic diversity in scientific collaboration.

Nat Commun 9, 5163 (2018). https://doi.org/10.1038/s41467-018-07634-8Download citationReceived: 31 May 2018Accepted: 12 November 2018Published: 04 December 2018DOI: https://doi.org/10.1038/s41467-018-07634-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Download PDF

Advertisement

Explore content

Research articles

Reviews & Analysis

News & Comment

Videos

Collections

Subjects

Follow us on Facebook

Follow us on Twitter

Sign up for alerts

RSS feed

About the journal

Aims & Scope

Editors

Journal Information

Open Access Fees and Funding

Calls for Papers

Editorial Values Statement

Journal Metrics

Editors' Highlights

Contact

Editorial policies

Top Articles

Publish with us

For authors

For Reviewers

Language editing services

Submit manuscript

Search

Search articles by subject, keyword or author

Show results from

All journals

This journal

Search

Advanced search

Quick links

Explore articles by subject

Find a job

Guide to authors

Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

About us

Press releases

Press office

Contact us

Discover content

Journals A-Z

Articles by subject

Protocol Exchange

Nature Index

Publishing policies

Nature portfolio policies

Open access

Author & Researcher services

Reprints & permissions

Research data

Language editing

Scientific editing

Nature Masterclasses

Research Solutions

Libraries & institutions

Librarian service & tools

Librarian portal

Open research

Recommend to library

Advertising & partnerships

Advertising

Partnerships & Services

Media kits

Branded

content

Professional development

Nature Careers

Nature

Conferences

Regional websites

Nature Africa

Nature China

Nature India

Nature Italy

Nature Japan

Nature Korea

Nature Middle East

Privacy

Policy

Use

of cookies

Your privacy choices/Manage cookies

Legal

notice

Accessibility

statement

Terms & Conditions

Your US state privacy rights

© 2024 Springer Nature Limited

Close banner

Close

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Email address

Sign up

I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

Close banner

Close

Get the most important science stories of the day, free in your inbox.

Sign up for Nature Briefing

ETHNICITY在剑桥英语词典中的解释及翻译

ETHNICITY在剑桥英语词典中的解释及翻译

词典

翻译

语法

同义词词典

+Plus

剑桥词典+Plus

Shop

剑桥词典+Plus

我的主页

+Plus 帮助

退出

剑桥词典+Plus

我的主页

+Plus 帮助

退出

登录

/

注册

中文 (简体)

查找

查找

英语

ethnicity 在英语中的意思

ethnicitynoun [ C or U ] uk

Your browser doesn't support HTML5 audio

/eθˈnɪs.ə.ti/ us

Your browser doesn't support HTML5 audio

/eθˈnɪs.ə.t̬i/

Add to word list

Add to word list

a large group of people with a shared culture, language, history, set of traditions, etc., or the fact of belonging to one of these groups: Ethnicity is not considered when reviewing applications. Our students have many different nationalities, religions, and ethnicities. 见

ethnic

更多范例减少例句The differences in parent income and education by ethnicity are startling.He was a Trinidadian of Indian ethnicity.He writes on ethnicity and other topics for an online journal. Statistical information by ethnicity was available.This can help people of different ethnicities and backgrounds to understand one another.I would never discriminate against someone from another ethnicity.

(ethnicity在剑桥高级学习词典和同义词词典中的解释 © Cambridge University Press)

ethnicity | 美式英语词典

ethnicitynoun [ C/U ] us

Your browser doesn't support HTML5 audio

/eθˈnɪs·ɪ·t̬i/

Add to word list

Add to word list

a large group of people who have the same national, racial, or cultural origins, or the state of belonging to such a group: [ U ] They place no importance on ethnicity.

(ethnicity在剑桥学术词典中的解释 © Cambridge University Press)

ethnicity的例句

ethnicity

Critically, it was a peaceful process, remarkable in light of the tensions surrounding ethnicity and language in the country.

来自 Cambridge English Corpus

As such, ethnicity as ideology provides a psychological formula which mitigates the uncertainties of state- society relations.

来自 Cambridge English Corpus

While the inclusion of names is perhaps quite a basic marker of ethnicity, it should not be considered unimportant.

来自 Cambridge English Corpus

It is important to confirm the ethnicity of these persons.

来自 Cambridge English Corpus

The nine participants differed in age, diagnosis and ethnicity.

来自 Cambridge English Corpus

Finally, a measurement artifact that possibly could account for these results is that the direction of reporting bias for maltreatment cases differs by ethnicity.

来自 Cambridge English Corpus

Pretenders to power were unable to call upon the idioms of class, ethnicity or even religion to rouse popular movements in their support.

来自 Cambridge English Corpus

Cross-cutting subject areas include children and the family, disability, gender, mental health, old age, race/ethnicity and young people.

来自 Cambridge English Corpus

The central claim of this book is that identities such as gender and ethnicity are achieved, not genetically ascribed.

来自 Cambridge English Corpus

Some of the differences between participants that we initially ascribed to ethnicity, such as self-rated health, were strongly influenced by sample selection.

来自 Cambridge English Corpus

As a result, many rulers turned to parochial and exclusive identity groups, such as ethnicity, for support.

来自 Cambridge English Corpus

A single ethnicity cannot govern effectively in a multi-ethnic country.

来自 Cambridge English Corpus

Relative risks adjusted for gender, age in 1981, socio-economic status, self-reported ethnicity and marital status in 1981.

来自 Cambridge English Corpus

Relative risks adjusted for gender, age in 1981, socio-economic status, self-reported ethnicity and marital status in1981.

来自 Cambridge English Corpus

What does ethnicity have to do with adolescents' psychosocial functioning?

来自 Cambridge English Corpus

查看ethnicity的所有示例

示例中的观点不代表剑桥词典编辑、剑桥大学出版社和其许可证颁发者的观点。

ethnicity的发音是什么?

 

C1

ethnicity的翻译

中文(繁体)

種族特點, 種族淵源…

查看更多内容

中文(简体)

种族特点, 种族渊源…

查看更多内容

西班牙语

etnia, origen étnico, grupo étnico…

查看更多内容

葡萄牙语

etnicidade, etnia…

查看更多内容

更多语言

法语

土耳其语

in Dutch

捷克语

丹麦语

印尼语

泰语

越南语

波兰语

in Swedish

马来语

德语

挪威语

in Ukrainian

ethnicité…

查看更多内容

etnik yapı…

查看更多内容

etniciteit…

查看更多内容

etnický původ…

查看更多内容

etnisk tilhørsforhold, etnicitet…

查看更多内容

etnisitas, kedaerahan…

查看更多内容

ชาติพันธุ์…

查看更多内容

sắc tộc…

查看更多内容

etniczność…

查看更多内容

etnicitet…

查看更多内容

etnisiti…

查看更多内容

die Ethnizität…

查看更多内容

etnisitet…

查看更多内容

національність…

查看更多内容

需要一个翻译器吗?

获得快速、免费的翻译!

翻译器工具

 

浏览

ethnic cleansing

ethnic minority

ethnic monitoring

ethnically

ethnicity

ethno-

ethnocentric

ethnocentrism

ethnocultural

ethnicity的更多意思

全部

ethnicity noun, at ethnic

查看全部意思»

“每日一词”

marshmallow

UK

Your browser doesn't support HTML5 audio

/ˌmɑːʃˈmæl.əʊ/

US

Your browser doesn't support HTML5 audio

/ˈmɑːrʃˌmæl.oʊ/

a soft, sweet, pink or white food

关于这个

博客

Renowned and celebrated (Words meaning ‘famous’)

March 13, 2024

查看更多

新词

inverse vaccine

March 11, 2024

查看更多

已添加至 list

回到页面顶端

内容

英语美式例句翻译

©剑桥大学出版社与评估2024

学习

学习

学习

新词

帮助

纸质书出版

Word of the Year 2021

Word of the Year 2022

Word of the Year 2023

开发

开发

开发

词典API

双击查看

搜索Widgets

执照数据

关于

关于

关于

无障碍阅读

剑桥英语教学

剑桥大学出版社与评估

授权管理

Cookies与隐私保护

语料库

使用条款

京ICP备14002226号-2

©剑桥大学出版社与评估2024

剑桥词典+Plus

我的主页

+Plus 帮助

退出

词典

定义

清晰解释自然的书面和口头英语

英语

学习词典

基础英式英语

基础美式英语

翻译

点击箭头改变翻译方向。

双语词典

英语-中文(简体)

Chinese (Simplified)–English

英语-中文(繁体)

Chinese (Traditional)–English

英语-荷兰语

荷兰语-英语

英语-法语

法语-英语

英语-德语

德语-英语

英语-印尼语

印尼语-英语

英语-意大利语

意大利语-英语

英语-日语

日语-英语

英语-挪威语

挪威语-英语

英语-波兰语

波兰语-英语

英语-葡萄牙语

葡萄牙语-英语

英语-西班牙语

西班牙语-英语

English–Swedish

Swedish–English

半双语词典

英语-阿拉伯语

英语-孟加拉语

英语-加泰罗尼亚语

英语-捷克语

英语-丹麦语

English–Gujarati

英语-印地语

英语-韩语

英语-马来语

英语-马拉地语

英语-俄语

English–Tamil

English–Telugu

英语-泰语

英语-土耳其语

英语-乌克兰语

English–Urdu

英语-越南语

翻译

语法

同义词词典

Pronunciation

剑桥词典+Plus

Shop

剑桥词典+Plus

我的主页

+Plus 帮助

退出

登录 /

注册

中文 (简体)  

Change

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

中文 (简体)

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

Nederlands

Svenska

Dansk

Norsk

हिंदी

বাঙ্গালি

मराठी

ગુજરાતી

தமிழ்

తెలుగు

Українська

关注我们

选择一本词典

最近的词和建议

定义

清晰解释自然的书面和口头英语

英语

学习词典

基础英式英语

基础美式英语

语法与同义词词典

对自然书面和口头英语用法的解释

英语语法

同义词词典

Pronunciation

British and American pronunciations with audio

English Pronunciation

翻译

点击箭头改变翻译方向。

双语词典

英语-中文(简体)

Chinese (Simplified)–English

英语-中文(繁体)

Chinese (Traditional)–English

英语-荷兰语

荷兰语-英语

英语-法语

法语-英语

英语-德语

德语-英语

英语-印尼语

印尼语-英语

英语-意大利语

意大利语-英语

英语-日语

日语-英语

英语-挪威语

挪威语-英语

英语-波兰语

波兰语-英语

英语-葡萄牙语

葡萄牙语-英语

英语-西班牙语

西班牙语-英语

English–Swedish

Swedish–English

半双语词典

英语-阿拉伯语

英语-孟加拉语

英语-加泰罗尼亚语

英语-捷克语

英语-丹麦语

English–Gujarati

英语-印地语

英语-韩语

英语-马来语

英语-马拉地语

英语-俄语

English–Tamil

English–Telugu

英语-泰语

英语-土耳其语

英语-乌克兰语

English–Urdu

英语-越南语

词典+Plus

词汇表

选择语言

中文 (简体)  

English (UK)

English (US)

Español

Русский

Português

Deutsch

Français

Italiano

正體中文 (繁體)

Polski

한국어

Türkçe

日本語

Tiếng Việt

Nederlands

Svenska

Dansk

Norsk

हिंदी

বাঙ্গালি

मराठी

ગુજરાતી

தமிழ்

తెలుగు

Українська

内容

英语 

 Noun

美式 

 Noun

例句

Translations

语法

所有翻译

我的词汇表

把ethnicity添加到下面的一个词汇表中,或者创建一个新词汇表。

更多词汇表

前往词汇表

对该例句有想法吗?

例句中的单词与输入词条不匹配。

该例句含有令人反感的内容。

取消

提交

例句中的单词与输入词条不匹配。

该例句含有令人反感的内容。

取消

提交

族群(同一地点同一种生物所形成的团体)_百度百科

一地点同一种生物所形成的团体)_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心族群是一个多义词,请在下列义项上选择浏览(共2个义项)展开添加义项族群播报讨论上传视频同一地点同一种生物所形成的团体收藏查看我的收藏0有用+10族群(英语:Ethnic group或ethnicity)是指人类历史以来区分我族及“他者”的分类方式之一。民族可能因历史及时空环境,基于历史、文化、语言、地域、宗教、血缘祖先认同、行为、生物/外貌特征而形成“一群”与其它有所区别的群体。这些区别我者和他者的民族性(英语:ethnicity)特质可能包括“客观”及“主观”(如认知和感情的成分)。中文名族群外文名Ethnic Group/Ethnicity/Population名族学指地理上靠近、语言上相近定    义同一地点同一种生物所形成的团体比    如整个地球为其讨论的范围划    分居住地或祖籍地对人群地归类。目录1定义▪定义一▪定义二2族群划分3学者观点4都市族群定义播报编辑定义一族群在民族学中指地理上靠近、语言上相近、血统同源、文化同源的一些民族的集合体,也称族团。 [1]定义二族群族群是指在同一时间同一地点同一种生物所形成的团体。比如说,以整个地球为其讨论的范围时,则人类的族群以现阶段而言是由七十亿人口所组成的。如果我们以台湾为一地理的范围来看,则在此时台湾的人类族群只有由两千三百万人口所组成的团体。台湾的人类族群是属于整个地球人类族群的一部份,我们又称其为地球人类族群的subpopulation。所以以一个大的地理范围所定义的族群,又可以因为讨论的地理范围而分成数各小的次族群,就以人类的族群而言,如果我们以每一国家的疆界为区隔,则地球上有多少国家就会有多少次族群。同样的我们也可以在次族群中再次的以地理的区隔来划分更多的次族群,比如说居住在台北市的台湾人类族群的次族群,或是居住在台中的台湾人类族群的次族群,当然这些次族群也同样是属于地球人类族群的次族群。地球上的其他的物种所组成的族群关系,就像是人类族群一般,可以大至包含全球的同一物种的所有个体,也可能只由一个动物园圈养范围内的数只动物或植物园中的数棵植物。但是不论所讨论的族群组成的份子是多还是少,由于族群是由同种生物、在同一时间、同一的地点所组成的,所以同一族群中的各个生物个体都有机会经由有性生殖的过程进行基因的交换,换句话说就是,在同一族群中的所有个体的所有基因都是可为该族群中所有同种生物所能共享的。就是因为每个个体所拥有的基因都是该族群各个份子所共享的,所以我们就称一族群中所有基因的集合为基因池(gene pool)。所以有时又会说,凡是可以共享同一基因池的所有个体的集合就是一族群。族群划分播报编辑按居住地对人群分类:如海外华人、湖南人、台湾人、北京人则多以出生地、居住地或祖籍地对人群地归类。按宗教信仰对人群分类,如穆斯林即指信仰伊斯兰教的信众;从民族学上,一个民族如果多数人信仰伊斯兰教,可以被认为属于伊斯兰民族,属于对阿拉伯人或以信仰伊斯兰教为主的民族称谓。一个民族通常包含多个族群。一个族群通常包含多个民系。学者观点播报编辑人类学学者丹溪草所著的《人类命运:变迁与规则》中认为“族群”是家国的血脉、是民族复兴的根基。 [2]人类族群在远古的动物世界中“属于比较边缘的种群”。但生存环境却并非现代人想象的那样“十分恶劣”——“诸如此类的认知往往都是我们基于现在生活环境比较下的认知”。 [3]都市族群播报编辑H族:2012年产生的H族代表的自由、奔放、舒适、健康的生活方式,已经攀上精英视界高峰,渐形成为无与伦比的圈子时尚。横跨60后、70后、80后,覆盖海归学子、华人华侨、企业家、职业股民、炒房者、金领、创业者、设计师、建筑师、草根明星、意见领袖、演艺明星等人群H族所倡导的生活方式,也叫安华生活,以High、Healthy、Honest、Harmony、Honey、Hope、Handsome为主要特征,产生于安华卫浴的客户群体。H族在成长过程中接受良好的教育,深受北美文化的影响,在了解中国历史的基础,喜欢潜心钻研美国等发达国家的领先产品和技术,看北美大片,追求科技、自由、时尚、舒适、健康的高品质生活。H族以中产阶级、高净值人群、富豪等精英为主,不仅提倡和坚持奋斗、拼搏、不断追求人生价值实现的人生,而且提倡安逸舒适、自由奔放、简约优雅、精致唯美、豪放大气、先进科技的生活状态,崇尚与世界接轨、健康正直、满怀信心希望、收获幸福的生活态度,强调“可持续的生活方式”。金牌达人:在中产阶级、精英人士,或者是3A族中流行一种积极乐观的金质生活,另一种说法则是金牌卫浴式的生活方式,来自于金牌卫浴的主张“品鉴金质人生”,他们的特征是追求美好生活,不怕艰难、不怕劳累、不怨天不尤人,一直信念坚定、努力奋斗寻找成功方法和美好生活的人,他们信奉美好生活的金牌就在前方,当然,很多人成功实现了自己的梦想,过上了金质生活。金牌达人这个群体所跨越的年龄阶段、职业背景都很大,既有60后、70后的富一代,也有80后、90后的富二代、创一代,知识分子、企业家、经理人、职业股民、炒房者、高级白领、创业者、设计师、建筑师、演艺明星、草根红人、知名写手、海归华侨等,都可能是金牌达人中的一员。金牌卫浴认为,“金牌达人”代表在创造和享受金质生活方面很有专长的人士,无论有钱与无钱,他们都能创造出精致、时尚、舒适、环保的金质生活。这一主张同金牌卫浴“品鉴金质人生”的品牌口号密切吻合,代表了积极乐观的奋斗精神、一种永不退缩的精神、一种为追求美好生活而坚持不懈的信念,这种精神同样是金牌卫浴企业文化的核心构成。慢活族:快生活的反对者,提倡慢工作,慢运动,慢阅读。慢活并不是蜗牛化,而是追求平衡,该快则快,能慢则慢。放慢速度,关注心灵成长,动手劳动,注意环保。步行上下班,改掉性急的毛病,远离喧嚣的人群,同时也有益健康。奔奔族:奔波、奔跑、奔放,他们自认为在奔向生活,别人看来只是在疲于奔命。他们一路嚎叫地奔跑在事业的道路上;同时他们又是中国社会压力最大的族群,身处于房价高、车价高、医疗费用高的“三高时代”,时刻承受着压力,爱自我宣泄表达对现实抗争。乐活族:乐观、包容,倡导积极乐观、健康环保的生活,通过消费、透过生活,支持环保、做好事,自我感觉好;他们身心健康,每个人也变得越来越靓丽、有活力。这个过程就是:Dogood、Feelgood、Lookgood(做好事,心情好,有活力)。相亲族:生活圈子不出办公室,却渴望与隔壁写字楼的人结婚。他们每周相亲2、3次,约会控制在10分钟左右,追求的是过程,不是结果。维客:崇尚共同创作,如编写字典、编写百科。摩浴族:喜欢享受现代的沐浴生活,家里都会有一台浴缸。寻觅属于自己的轻松生活,把沐浴当成一项享受的事情,从而获得身心的放松。这个人群摆脱了以往的麻木生活,开始对生活与工作充满激情,他们的头脑开始变得富有创意,他们的目光开始变得长远,他们的理想变得充实。从沐浴中获取生活的灵感,这就是缘自金牌卫浴的摩浴族。小私:喜欢享受私人服务并拥有私人服务的人,比如私人保姆、私人律师、私人医生、私人美容师、私人秘书、私人生活顾问。月光族:将每月赚的钱都用光、花光的人,月光族一般都是年轻一代,他们与父辈勤俭节约的消费观念不同,喜欢追逐新潮,扮靓买靓衫,只要吃得开心,穿得漂亮。想买就买,根本不在乎钱财。比一个月花光工资的月光族更糟的,叫星光族与日光族。SOHO族:在家工作,家与公司(工作)合而为一,工商部门和税局需要重点监控的人。威客:“我帮人人,人人帮我”,网上出售个人智慧、知识、专业特长与创意点子,也可以是问答平台上的问题解决者们。换客:以物易物的人们——互联网是他们的跳蚤市场,只有需要“别针换别墅”的人才走上街头。套牢族:用生活自由买股票的人,追新族(爱买新股者)可能是他们的前身。毕婚族:认为婚姻是职业规划的一部分,大学毕业的出路之一就是结婚———对方工作的稳定性、收入情况都是爱情之前的标准。本本族:对学历证、技能证、等级证等证书相当热爱和迷信,让他们成为知识的奴隶。考碗族:他们的兴盛与官僚体制的兴盛有关。公务员是金饭碗,他们要吃这碗饭。号哭族:压力无处宣泄或情感冷漠,不得不在周六抱团,靠看肥皂剧或朗诵诗歌去抱头痛哭的人。NONO族:他们的存在是对小资生活的双重否定———对虚伪说NO,对做作说NO,对跟风说NO,对千人一面的品牌说NO。尼特族:不升学、不就业、不进修,不参加就业辅导,无所事事足以概括其人生。漂移族:解开领带、从办公室走出来的时间都用来飙车。成为赛车高手是一个梦想,但看《头文字D》是不够的。LOMO族:表面上只是选了与众不同的LOMO相机去拍自己,实际上在选择与别不同的视角去过日子。候鸟族:白天乘坐公交车、地铁、私家车奔波几十公里从郊外赶到市中心,然后在晚上一脸疲态地赶回去。烧包族:泛指那些出手阔绰,喜欢个性消费、超前消费的人。口头禅是“我不是想买这件东西,我只是想买我想买这件东西时的心情”。99族:可悲的完美主义者—拥有再多从来不满足,拼命工作只为了在获得99后,再获得额外的那个“1”,往往生活得很累、很不值。装嫩族:年龄超过30岁、爱穿显嫩的衣服、爱穿球鞋、爱泡夜店。以为自己是年轻人,实际上年华已逝,快近中年。草莓族:一碰到压力就崩溃的人。像草莓一样一压就扁,近亲是“柿子族”。伪族:饭桌上夸夸其谈的话题发起者。自以为精通电影、棒球甚至航天技术,其实是不懂装懂。捧车族:油价上涨、能源危机、城市交通拥堵、停车场收费昂贵,一些人宁可把车“捧”起来闲置,把自己的私家车从星期一放到星期五,星期六才能去郊外溜溜。博客:原来的解释很简单,写博客、写微博的人。后来被划分了名人与草根、商业与非商业、职业与非职业。超女/快男:选秀时代的成功学,由连续几年的全国选秀活动而兴起,有欲望的快男超女,而不是清纯的少男少女。隐婚族:真正明白办公室社交的人———隐藏已婚事实,可以和同事泡夜场、谈恋爱;反正不会和同事成为朋友,或者结婚。干物女:“像香菇、干贝一样干巴巴“的女人。生活不拘小节、下班后直接回家、远离恋爱、口头禅是“这样做最轻松”———在办公室妆容整齐,回家却穿着有破洞的运动服。哈X族:迷恋某些东西的人,包括哈韩、哈日、哈猫、哈哈(哈利·波特)……哈字来自满语“hadaba“,意思是拍马屁和献媚。对,他们干的就是这个。3A族:有车、有房、有家,相当于小资,也是中产。蜗蜗族:社会压力的最佳适应者。特征是玩命和玩乐———工作日顶住压力、拿下高薪,休息日自由自我、痛快享乐。淘宝族:坚信淘宝网上可以得到生活的一切或一切的生活———网络拍卖的少林秘笈、原味内裤和坦克,证明了这一点。拍客:用自己手中的手机、数码相机或数码摄像机记录生活,这就是拍客。拍客们总是不忘在工作之余,在生活中,在旅行中,用镜头记录下他们的所思所想。拍客妇孺皆是,老少皆宜,谁都能做拍客。辣奢族:奢侈品是人生必经的甜酸苦辣,对名牌的热爱是辣,加班的时候是酸,吃方便面蓄钱是苦,买到限量版LV包包是甜。酷抠族:酷抠族未必贫穷,也不是守财奴,他们具有较高的学历,不菲的收入。酷抠族精打细算不是吝啬,而是一种节约的方式。喜欢高质量、幽雅的生活,具有很好的审美观眼光和高雅的生活品位。穷忙族:越穷越忙,越忙越穷。拼客:天赋是整合资源,将无偿使用他人车辆理解为节约、快乐、沟通与交友;拼房、拼车、拼网、拼卡。御宅族:SOHO族的反义词,SOHO族在家工作,他们在家不工作。晒客:拿工资、疾病、女朋友来晒,用隐私来换发言权。国贸男/张江男:偶然也被称为“水晶凤凰精英男”。丁克族:只是单独,而不是孤独,老无所依就是指这种人。背包族:背包族指背包进行旅行的人。他们是热爱大自然和自由的理想主义者,背起背包,带上睡袋和日常用品,手拿一张地图就可以开始一个人的旅行。他们也是一群怀抱理想独自上路到处流浪看世界的人,旅行是生命的又一种延续。极客:灵魂和生活都在网上的人,当然也富有智慧。沙发客:缘起于美国,喜欢旅游包括出国游,与同为沙发客的人群互相提供住所,并友情提供当地美景、美食的游历,对传统的酒店式旅游的挑战方式。M-zone人: 我的地盘我做主,但沦为中国电信的活广告,相当有影响力。I族:奉乔布斯为生活方式教主,自以为戴上白色耳机、捧着IPAD、裤兜里插着IPHONE,就与世隔绝。也叫苹果控。向日葵族会善于发现微小幸福,在“向日葵”族的概念里,敏感与细腻不完全代表着多愁善感,对微小快乐的敏感其实是幸福的来源之一。并不是每个人的生活都能比戏剧更精彩,蕴藏在平淡里的小幸福才更值得珍惜。向日葵族没有太大野心,“知足常乐”一定是他们信奉的座右铭之一。他们相信欲望越少,越容易快乐。无法掌控的事情,带来的压力只能选择承受;可以掌控的事情,他们往往不会主动给自己加压力。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

版权声明:本文由imtoken im钱包下载发布,如需转载请注明出处。

本文链接:https://www.siyuewuyu.com/article/464.html