imtoken官网版下载|oscilloscope示波器

imtoken官网版下载 2024-03-09 17:50:51

示波器 | Tektronix

示波器 | Tektronix

切换搜索

Current Language

×

Chinese (Simplified, PRC)

选择语言:

English

FRANÇAIS

Việt Nam

简体中文

日本語

한국어

繁體中文

切换菜单

x

To find technical documents by model, try our Product Support Center

Show all results →

产品

示波器和探头

示波器

高速数字化仪

探头和附件

分析仪

频谱分析仪

参数分析仪

相干光信号分析仪

频率计数器

Keithley 产品

信号发生器

任意波函数发生器

任意波形发生器

源和电源

电源

DC 电子负载

源测量单元

电化学产品

仪表

数字万用表

低电平仪器/灵敏专用仪器

其他产品

TMT4 PCIe性能综合测试仪

参考解决方案

开关和数据采集系统

半导体测试系统

元件和附件

软件

翻新测试设备

查看所有产品

促销

解决方案

主要趋势

高级研究

航空航天和国防

汽车

教育和教学实验室

医疗

功率半导体

半导体设计和制造

应用

3D 传感与成像检定

EMI/EMC 测试

高速串行通信

材料科学

电源能效管理

Test Automation

无线和射频

校准和服务

校准服务

申请维修服务

Multi-Brand Service Request

Factory Verified Calibration

Multi-Brand Compliant Calibration

质量和认证

校准能力

位置

服务级别

Factory Calibration Status Tracking

资产管理服务

CalWeb

托管服务

查看所有服务

维修服务

申请维修服务

查看保修状态

跟踪维修状态

部件

厂家服务计划

协议续订

产品全面呵护

金牌保障计划

泰克标准保障计划

吉时利保障维修计划

原厂校准计划

测试服务 (US Only)

包装测试

泰克器件解决方案

晶片测试

封装组装和测试

2.5 D / 3 D 封装

设计和仿真

支持

Owner Resources

按型号查找软件、手册、常见问题解答

查看保修状态

订单状态

部件

TEKAMS(软件许可证管理)

用户论坛

常见问题

联系技术支持

学习中心

支持中心

资源

产品注册

合作伙伴

质量保证

安全召回

产品安全通知

产品回收(仅限欧洲)

出口代码

诚信和遵守程序

新闻编辑室

事件

博客

案例

溯源能力

购买 | 报价

联系销售人员进行产品演示和咨询

销售联系

索取报价请求服务报价/信息

电话

促销

Partner Locator

GSA 计划

购买方式与渠道

联系我们

切换搜索

x

To find technical documents by model, try our Product Support Center

Show all results →

登陆

Current Language

×

Chinese (Simplified, PRC)

选择语言:

English

FRANÇAIS

Việt Nam

简体中文

日本語

한국어

繁體中文

联系我们

技术支持

售前咨询

与泰克代表实时聊天。 工作时间:上午 9:00 - 下午 5:00(太平洋标准时间)。

电话

致电我们

工作时间:上午9:00-下午5:00(太平洋标准时间)

联系我们

联系我们提供意见、

问题或反馈

下载

下载手册、产品技术资料、软件等:

下载类型

全部显示

Products

Datasheet

Manual

Software

Marketing Document

Faq

Video

型号或关键字

反馈

提供反馈?我们非常想听听您的想法。

正面反馈和负面反馈均有助于我们不断改善 Tek.com 体验。如有问题或我们是否正在完成一项出色的工作,请告知。

告知我们您的想法

Accelerate progress at the 2022 Tektronix Innovation Forum. Over 30 free technical sessions. Sign up now.

示波器

在此搜索您的确切产品

查看我们提供的所有产品

查看所有示波器

  Back to main

比较并选择适合您使用的示波器

查看所有示波器

带宽高达 80 GHz / DC

模拟通道多达 8 个

数字通道数多达 64 条(可选)

采样率高达 100 Gs/s

最低 (>30 MHz)

最小值 1 GHz

最小值 8 GHz

最高

2-4

6

8

 

最小值 16(可选)

最小值 32(可选)

最小值 64(可选)

 

最低 (>300 kS/s)

最小值 5 GS/s

最小值 25 GS/s

最高

TBS1000C 数字存储示波器

带宽

50 MHz - 200 MHz

模拟通道

2

数字通道数

-

采样率

1 GS/s

起价

US $514

比较

查看产品

比较 2/3

TBS2000B 数字存储示波器

带宽

70 MHz - 200 MHz

模拟通道

2-4

数字通道数

-

采样率

1GS/s - 2 GS/s

起价

US $1,690

比较

查看产品

比较 2/3

2 系列 MSO 便携式混合信号示波器

带宽

70 MHz - 500 MHz

模拟通道

2 或 4

数字通道数

16(选配)

采样率

1.25GS/s - 2.5GS/s

起价

US $2,020

比较

查看产品

比较 2/3

3 系列 MDO 混合域示波器

带宽

100 MHz - 1 GHz

模拟通道

2 或 4

数字通道数

16(选配)

采样率

2.5 GS/s - 5 GS/s

起价

US $5,020

比较

查看产品

比较 2/3

New Series!

4 系列 B MSO 混合信号示波器

带宽

200 MHz 至 1.5 GHz

模拟通道

4 或 6

数字通道数

最多 48 条(可选)

采样率

6.25GS/s

起价

US $10,000

比较

查看产品

比较 2/3

5 系列 B MSO 混合信号示波器

带宽

350 MHz - 2 GHz

模拟通道

4、6 或 8

数字通道数

多达 64 条(可选)

采样率

6.25GS/s

起价

US $21,600

比较

查看产品

比较 2/3

5 系列紧凑型 MSO

带宽

1 GHz

模拟通道

8

数字通道数

多达 64 条(可选)

采样率

6.25GS/s

起价

Contact Us

比较

查看产品

比较 2/3

6 系列 B MSO 混合信号示波器

带宽

1 GHz - 10 GHz

模拟通道

4、6 或 8

数字通道数

多达 64 条(可选)

采样率

50 GS/s

起价

US $39,300

比较

查看产品

比较 2/3

6 系列紧凑型数字化仪

带宽

1 GHz - 8 GHz

模拟通道

4 (SMA)

数字通道数

-

采样率

25 GS/s

起价

Contact Us

比较

查看产品

比较 2/3

MSO/DPO70000DX 混合信号/数字荧光示波器

带宽

8 GHz - 33 GHz

模拟通道

4

数字通道数

16(选配)

采样率

25 GS/s - 100 GS/s

起价

Contact Us

比较

查看产品

比较 2/3

DPO70000SX ATI 高性能示波器

带宽

13 GHz - 70 GHz

模拟通道

1-4

数字通道数

-

采样率

50 GS/s - 200 GS/s

起价

Contact Us

比较

查看产品

比较 2/3

8 系列采样示波器

带宽

30 GHz

模拟通道

4

数字通道数

-

采样率

300 kS/s

起价

Contact Us

比较

查看产品

比较 2/3

MDO3000混合域示波器

带宽

100 MHz - 1 GHz

模拟通道

2 或 4

数字通道数

16(选配)

采样率

2.5 GS/s - 5 GS/s

起价

US $8,000

比较

查看产品

比较 2/3

MDO4000C混合域示波器

带宽

200 MHz - 1 GHz

模拟通道

4

数字通道数

16(选配)

采样率

2.5 GS/s - 5 GS/s

起价

US $13,000

比较

查看产品

比较 2/3

您最多只能比较 3 个产品。 若要比较此产品,请取消选中其他 3 个产品中的一个。

请至少先选择两个产品系列。

×

 

产品系列比较

TBS1000C 数字存储示波器

申请产品演示

TBS2000B 数字存储示波器

申请产品演示

2 系列 MSO 便携式混合信号示波器

申请产品演示

3 系列 MDO 混合域示波器

申请产品演示

4 系列 B MSO 混合信号示波器

申请产品演示

5 系列 B MSO

申请产品演示

5 系列紧凑型 MSO

申请产品演示

6 系列 B MSO

申请产品演示

6 系列紧凑型数字化仪

申请产品演示

MSO/DPO70000DX 混合信号/数字荧光示波器

申请产品演示

DPO70000SX ATI 高性能示波器

申请产品演示

8 系列采样示波器

申请产品演示

MDO3000混合域示波器

申请产品演示

MDO4000C混合域示波器

申请产品演示

带宽

50 MHz - 200 MHz

70 MHz - 200 MHz

70 MHz - 500 MHz

100 MHz - 1 GHz

200 MHz 至 1.5 GHz

350 MHz - 2 GHz

1 GHz

1 GHz - 10 GHz

-

8 GHz - 33 GHz

13 GHz - 70 GHz

30 GHz

100 MHz - 1 GHz

200 MHz - 1 GHz

模拟通道

2

2-4

2 或 4

2 或 4

4 或 6

4、6 或 8

8

4、6 或 8

-

4

1-4

1-4

2 或 4

4

数字通道数

-

-

16(选配)

16(选配)

最多 48 条(可选)

多达 64 条(可选)

多达 64 条(可选)

多达 64 条(可选)

-

16(可选)

-

-

16(选配)

16(选配)

采样率

1 GS/s

1GS/s - 2 GS/s

1.25 GS/s 所有通道;2.5 GS/s 半通道

2.5 GS/s - 5 GS/s

6.25GS/s

6.25GS/s

6.25GS/s

50 GS/s

-

25 GS/s - 100 GS/s

50 GS/s - 200 GS/s

300 kS/s

2.5 GS/s - 5 GS/s

2.5 GS/s - 5 GS/s

记录长度

20K 点

5M 点

10 Mpts

10 M

31.25 M 至 62.5 M

62.5 M - 500 M

125 M - 500 M

62.5 M - 1 G

-

31.25M - 1G 点

62.5M - 1G 点

> 800 M

10 M

20 M

频谱分析仪

标准数学 FFT

标准数学 FFT

标准数学 FFT

高达 3 GHz 的内置专用射频路径(可选)标准数学 FFT

带集成数字下变频器的频谱视图;每个通道的跨度为 312.5 MHz,500M 频宽(可选)标准数学 FFT

带集成数字下变频器的频谱视图;每个通道的标准跨度为 312.5 MHz,500M 频宽(可选)标准数学 FFT

带集成数字下变频器的频谱视图;每个通道的标准跨度为 312.5 MHz,500M 频宽(可选)标准数学 FFT

带集成数字下变频器的频谱视图;每个通道的标准跨度为 1.25 GHz,2 GHz 频宽(可选)标准数学 FFT

-

标准数学 FFT

标准数学 FFT

标准数学 FFT

高达 3 GHz 的内置专用射频路径标准数学 FFT

高达 6 GHz 的内置专用射频路径标准数学 FFT

函数发生器输出

-

-

1(可选,与辅助输出复用)

1(选配)

1(选配)

1(选配)

1(选配)

1(选配)

-

-

-

-

1(选配)

1(选配)

最大波形捕获速率

-

每秒 10000 次

-

>280,000 波形/秒

>500,000 波形/秒

>500,000 波形/秒

>500,000 波形/秒

>500,000  (峰值检测,包络采集模式),>30,000 波形/秒(所有其他采集模式)

-

>300,000 波形/秒

>300,000 波形/秒

记录长度/300 kS/s

>235,000 - >280,000 wfm/s

>270,000 - >340,000 波形/秒

RF 通道

-

-

-

1(选配)

-

-

-

-

-

-

-

-

1

1

RF 频率范围

-

-

-

9 kHz 至 1 GHz 或 3 GHz(可选)

示波器的频谱视图直流至带宽 (-3dB)

示波器的频谱视图直流至带宽 (-3dB)

示波器的频谱视图直流至带宽 (-3dB)

示波器的频谱视图直流至带宽 (-3dB)

-

-

-

-

9 kHz - 1 GHz(选配可高达 3 GHz)

9 kHz – 3 GHz/ 6 GHz(可选)

触发类型

边沿、脉宽、欠幅、线路

边沿、脉宽、欠幅

边沿、脉冲宽度、超时、欠幅、逻辑、建立/保持、上升/下降、并行、串行总线(可选)

边缘逻辑并行(可选) 脉宽上升/下降时间欠幅串行总线(可选)序列建立和保持超时视频

边缘毛刺码型脉宽欠幅串行总线(可选)建立和保持状态超时跳变窗口视频(可选)视觉触发 RF 频率与时间关系(可选) RF 幅度与时间关系(可选)

边缘毛刺码型脉宽欠幅串行总线(可选)建立和保持状态超时跳变窗口视频(可选)视觉触发 RF 频率与时间关系(可选) RF 幅度与时间关系(可选)

边缘毛刺码型脉宽欠幅串行总线(可选)建立/保持状态超时跳变窗口视频(可选)视觉触发

边缘毛刺码型脉宽欠幅串行总线(可选)建立和保持状态超时跳变窗口视频(可选)视觉触发 RF 频率与时间关系(可选) RF 幅度与时间关系(可选)

-

通信、总线、I2C、SPI、CAN、LIN、Flexray、RS-232/422/485/UART、USB、边沿、B 事件扫描、毛刺、码型、欠幅、串行码型、建立/保持、状态、超时、跳变、可视、带宽、窗口

边沿、B 事件扫描、毛刺、码型、欠幅、建立/保持、状态、超时、跳变、可视、带宽、窗口

时钟预定标输入

边沿逻辑并行脉宽上升/下降时间欠幅序列串行总线(可选)建立/保持超时视频

边沿逻辑并行脉宽射频(可选)上升/下降时间欠幅序列串行总线(可选)建立/保持超时视频

可选分析

-

-

I2C、SPI、RS232/422/485/UART、CAN、CAN-FD、LIN、SENT 解码

I²C/SPI 解码 I²S/LJ/RJ/TDM 解码 RS-232/422/485/UART 解码 CAN/LIN/FlexRay 解码 MIL-STD-1553/ARINC 429 解码功率分析 USB2.0 解码

1 线解码3 相功率分析高级功率分析 CAN/LIN/FlexRay 解码CXPI 解码EtherCAT 解码 以太网解码eSPI 解码 eUSB2 解码 I2C/SPI 解码 I2S/ LJ/RJ/TDM 解码 I3C 解码 曼彻斯特解码 MDIO 解码 MIL-STD-1553/ARINC 429 解码NFC 解码 NRZ 解码 PSI5 解码 RS-232/422/485/UART 解码 SDLC 解码 SENT 解码SMBus 解码 Spacewire 解码 频谱视图频谱分析 SPMI 解码 SVID 解码 USB 2.0 (LS/FS/HS) 宽禁带双脉冲测试

1 线解码8b10b 解码 10BASE-T1L 一致性 10BASE-T1S 一致性 高级抖动分析 高级功率分析 汽车以太网一致性 CAN/LIN/FlexRay 解码CXPI 解码eSPI 解码EtherCAT 解码以太网一致性 以太网解码eUSB2 解码 I2C/SPI 解码 I2S/LJ/RJ/TDM 解码 I3C 解码 IMDA 分析 IMDA DQ0 测量IMDA 机械测量 曼彻斯特解码 MDIO 解码 MIL-STD-1553/ARINC 429 解码MIPI C-PHY 解码 MIPI D-PHY (CSI/DSI) 解码 NFC 解码 NRZ 解码 PSI5 解码 RS-232/422/485/UART 解码 SDLC 解码 SENT 解码SMBus 解码 Spacewire 解码 SPMI 解码 SVID 解码 USB 2.0 解码 USB 2.0 一致性用户自定义滤波器 矢量信号分析 宽禁带双脉冲测试

1 线解码 8b10b 解码 高级抖动分析 高级功率分析 CAN/LIN/FlexRay 解码 CXPI 解码eSPI 解码EtherCAT 解码 以太网解码 eUSB2 解码 I2C/SPI 解码 I2S/LJ/RJ/TDM 解码 I3C 解码IMDA 分析 IMDA DQ0 测量 曼彻斯特解码 MDIO 解码 MIL-STD-1553/ARINC 429 解码 MIPI C-PHY 解码 MIPI D-PHY (CSI/DSI) 解码 NRZ 解码 PSI5 解码 RS-232/422/485/UART 解码 SDLC 解码 SENT 解码SMBus 解码 Spacewire 解码 SPMI 解码 SVID 解码 USB 2.0 解码 用户自定义过滤器

1 线解码 2.5 和 5GBASE-T 一致性 8b10b 解码 10BASE-T1L 一致性 10BASE-T1S 一致性 10GBASE-T 一致性 高级抖动分析 高级功率分析 汽车以太网一致性 CAN/LIN/FlexRay 解码 CXPI 分析 DDR3/LPDDR3 分析 eSPI 解码EtherCAT 解码以太网一致性 以太网解码eUSB2 解码 I2C/SPI 解码 I2S/LJ/RJ/TDM 解码 I3C 解码 IMDA 分析 IMDA DQ0 测量 IMDA 机械测量曼彻斯特解码 MDIO 解码 MIL-STD-1553/ARINC 429 解码 MIPI D-PHY 1.2 一致性 MIPI D-PHY 2.1 一致性 MIPI C-PHY 2.0 (CSI/DSI) 解码 MIPI D-PHY (CSI/DSI) 解码 NFC 解码 NRZ 解码 PSI5 解码 RS-232/422/485/UART 解码 SDLC 解码 SENT 解码SMBus 解码 Spacewire 解码 SPMI 解码 SVID 解码 USB 2.0 解码 USB 2.0 一致性 用户自定义过滤器 矢量信号分析 宽禁带双脉冲测试

-

MIPI® D-PHY 测试 (D-PHY)、DDR 内存总线分析 (DDRA)、DPOJET 抖动和眼图分析 (DJA)、DisplayPort 1.2 源测试自动化 (DP12)、以太网一致性测试解决方案 (ET3)、HDMI 一致性测试解决方案 (HT3)、HSIC 电气验证和协议解码 (HSIC)、MHL 高级分析和一致性测试 (MHD)、MOST 电气一致性和调试 (MOST)、MIPI M-PHY 发射机调试、检定和一致性测试 (M-PHY)、PCI Express 发射机一致性和调试 (PCE3)、SAS 12 Gb/s 测试 (SAS3)、串行数据链路分析解决方案软件(SLE、SLA)、SFP 一致性和调试 (SFP-TX)、SignalVu 矢量信号分析软件 (SVE)、Thunderbolt TX 一致性测试 (TBT-TX)、USB 2.0 一致性测试解决方案 (USB)、USB 3.0 发射机测试 (USB3)

DPOJET 抖动和眼图分析 (DJA)、串行数据链路分析可视化工具 (SDLA64)、SignalVu 矢量信号分析 (SVE)

光学 PAM4 (PAM4-O)

CAN/LIN 解码FlexRay 解码I2C/SPI 解码I2S/LJ/RJ/TDM 解码极限和模板测试功率分析MIL-STD-1553 解码RS-232/422/485/UART 解码USB 解码

CAN/LIN 解码CAN/LIN/FlexRay 解码以太网解码I2C/SPI 解码I2S/LJ/RJ/TDM 解码HDTV 视频极限和模板测试MIL-STD-1553 解码功率分析RS-232/422/485/UART 解码USB 解码

垂直精度

-

3%

±2.0%

±1.5%

±1%

±1%

±1%

±1%

-

±2%

±2%

-

±1.5%

±1.5%

自动化测量

32

32 和 FFT 功能用于深入波形分析

36

-

-

-

-

-

-

53

53

-

-

-

应用模块个数范围

-

-

-

-

-

-

-

-

-

-

-

-

-

-

上升时间

7.0 ns - 2.1 ns

3.5ns~5ns

5 ns 至 950 ps(70MHz 至 500MHz)

4000 ps 至 400 ps(100 MHz 至 1 GHz)

2.3 ns 至 450 ps(200 MHz 至 1.5 GHz)

175 ps - 1 ns

350 ps

400 ps - 40 ps (1 GHz - 10 GHz)

-

9 ps - 98 ps

<6ps - 13ps

取决于采样模块

400 ps - 4 ns

175 ps - 3.5 ns

显示

7 英寸(178 毫米)WVGA 彩色显示屏

9 英寸 TFT WVGA

10.1 英寸,1280 x 800

11.6 英寸,1920 x 1080 高清

13.3 英寸,1920 x 1080 高清

15.6 英寸,1920x1080 高清

-

15.6 英寸,1920x1080 高清

-

12.1 英寸(308 毫米),彩色

6.5 英寸(165 毫米),彩色

-

9 英寸(229 毫米),彩色

10.4 英寸(264 毫米),彩色

保修

5 年保修

5 年

1 年

3 年

3 年

1 年

3 年

1 年

-

一年保修

一年保修

一年保修

3 年

3 年

SA 实时捕获带宽

-

-

-

1 GHz(可选),3 GHz(可选)

频谱视图:312.5 MHz,500 MHz(可选)

频谱视图:312.5 MHz,500 MHz(可选)

频谱视图:312.5 MHz,500 MHz(可选)

频谱视图:1.25 GHz,2 GHz(可选)

-

-

-

-

最高 3 GHz

最高 3.75 Ghz

起价

US $514

US $1,690

US $2,020

US $5,020

US $10,000

US $21,600

Contact Us

US $39,300

Contact Us

Contact Us

Contact Us

Contact Us

US $8,000

US $13,000

了解我们的示波器产品。从日常台式示波器到实时高性能示波器。

台式示波器

混合域和混合信号示波器

高性能实时示波器

汽车示波器

示波器探头和附件

大量的泰克探头和附件供您选择,全部都能与业界领先的示波器完美匹配。 超过 100 种选择,您会找到特定测试应用中所需的示波器探头。

电流探头

高带宽和灵敏度。 通过安全认证。

低压差分探头

为串行总线 PHY 测量提供信号保真度。

高压差分探头

业内领先的性能,高达 6000V。 通过安全认证。

IsoVu 光隔离探头

探测系统可以在出现共模信号或噪声情况下进行高分辨率测量。

无源探头

高带宽、低探头负载。

为滑轨探头供电

功率导轨探头具有低噪声、低负载、高带宽和高直流偏移等特征,专用于电源完整性测量。

查看更多探头和附件

示波器软件

我们拥有超过 30 款软件包,在您的示波器中添加一款软件包,分析具挑战性的系统设计。

查看更多选件

示波器分析软件

使用泰克软件自动执行测试、简化执行并加快富挑战系统设计的评估。了解我们示波器软件包的更多信息。

Keithley KickStart 软件

无需复杂编程,几分钟内即可开始测量。执行 I-V 检定等。

查看更多选件

示波器应用场合

电磁兼容性测试 (EMC)

汽车以太网测试

能效测试

示波器学习中心

了解如何使用示波器,并如何用示波器搭配其他仪器来排除系统异常、提供测量见解、探测。

入门手册

示波器基础知识和基本原理

在本综合入门手册中,您可以获得了解有关示波器基本原理、类型、系统、设置和使用所需的所有知识。

解决方案简介

使用示波器和函数发生器进行电容和电感测量

通过真实场景示例了解有关阻抗、阻抗测量方法、测量范围等的更多信息。

应用指南

Spectrum View(频谱视图):示波器频域分析新方法

了解 Spectrum View 分析如何实现独立优化时域和频域显示,以提供重要见解。

应用指南

示波器探头如何影响测量

了解示波器探头如何在测试点改变正在测量的信号,以及搜寻何种探测规格以最大程度地减小探测效果。

了解详情

示波器FAQs

什么是示波器?

示波器,用图形显示电信号,并显示它们随时间的变化情况。了解更多示波器是如何工作的,以及关于它们的用途和示波器的类型

示波器是用来做什么的?

工程师使用示波器来设计、制造或修理电子设备,以验证设备是否正常工作。

示波器是如何工作的?

示波器可以重建电信号 用三个系统:垂直、水平和触发一起工作来收集电信号的信息,这样示波器就可以图形化地显示这些信号。

示波器如何测量电压?

示波器测量电压波 通过传感器捕获振动或温度等物理现象,或电流或功率等电子现象。示波器将信号转换成波形并以图形形式显示出来,横轴表示时间,纵轴表示电压。

示波器能测量什么?

示波器测量 电压波,但它也可以用来测量电流,电阻,声音,电容,频率等。

示波器如何测量频率?

大多数示波器会自动测量频率 但是你也可以使用一个简单的方程(频率=1/周期)和你的示波器上的水平刻度手动测量频率。

示波器如何测量电流?

你可以用一台 示波器来测量电流 通过测量并联电阻上的电压降或使用电流探针。

示波器有哪些不同类型?

主要有两种类型的示波器: 模拟计算机和数字计算机两种。目前大多数工程师使用数字示波器,它分为五类:数字存储示波器、数字荧光粉示波器、混合信号示波器、混合域示波器和数字采样示波器。

什么是混合信号示波器?

混合信号示波器 是一种用于捕获、显示和比较模拟和数字信号的数字存储示波器。

什么是混合域示波器?

就像混合信号示波器, 混合域示波器 测量模拟和数字信号,但有内置频谱分析仪,同样也允许工程师进行射频(RF)测量。

如何使用示波器

学习基本的设置和如何使用示波器以及基本的测量技术与我们的示波器如何操作指南。

如何挑选示波器

在购买示波器时要考虑很多因素。在我们的指南中了解更多如何为你的应用挑选示波器

谁需要使用示波器?

科学家、工程师、物理学家、医学研究人员、汽车机械师、维修技师和教育工作者使用示波器来观察信号随时间的变化。这台功能强大的仪器有很多用途。

“我们找不到能够进行 测量的设备,例如,高端选通源电压。实际上,在当今存在更高频率的共模电压的情况下,大多数差分信号均无法得到准确测量。泰克闪亮登场。”

摩德纳雷焦艾米利亚大学 (UniMoRe) 教授 Giovanni Franceschini

分享故事

#TekScopeStory #TekOneMillion

关于泰克

我们提供专业的测量洞见信息,旨在帮助您提高绩效以及将各种可能性转化为现实。泰克设计和制造能够帮助您测试和测量各种解决方案,从而突破复杂性的层层壁垒,加快您的全局创新步伐。

更多详情

公司

关于我们

人才招聘

Newsroom

泰克线下活动

供应商多元化

泰克云上大讲堂

EA Elektro-Automatik

帮助与学习

联系我们

联系技术支持

所有者资源

学习中心

博客

合作伙伴

查找合作伙伴

联系我们

其他链接

© 2023 TEKTRONIX, INC.

网站地图

隐私权

使用条款

Terms and Conditions

致电我们

信息产业部备案许可证号:沪ICP备17023707号

反馈

示波器入门指南 - 示波器的基本操作 Oscilloscope Survival Guide - 知乎

示波器入门指南 - 示波器的基本操作 Oscilloscope Survival Guide - 知乎首发于示波器使用方法切换模式写文章登录/注册示波器入门指南 - 示波器的基本操作 Oscilloscope Survival Guide是德科技 Keysight Technologies​已认证账号先聊聊示波器的几个入门知识:示波器是干什么用的,示波器可以测量什么以及示波器、频谱仪和矢量网络分析仪有何区别?示波器是干什么用的?示波器是用于观察电信号电压随时间变化关系的仪器,用于分析信号的时域特性。使用示波器可以直观的测试信号的周期、相位、边沿时间以及多个信号对比,并观测信号随时间变化的幅度变化规律等。示波器是干什么用的https://www.zhihu.com/video/1618295539862384640示波器可以测量什么基本波形参数测量与电路异常诊断高速信号完整性分析(眼图、抖动分析)标准总线一致性分析(USB、PCle、DDR、HDMI等)串行信号解码(I2C 、 SPI 、 CAN等) 宽带信号的调制分析(UWB 、雷达等)示波器、频谱仪和矢量网络分析仪有何区别?示波器对于如今的模拟和数字电路来说,示波器是进行电压和定时测量的重要工具。示波器这一测量工具也是在各个电路实验中用来测试和验证实验作业及设计的最常用仪器。示波器是一种电子测量仪器,可以在无干扰的情况下监控输入信号,随后以图形方式采用简单的电压与时间格式显示这些信号。请注意,所有的示波器基本上只有数字储存示波器(简称DSO)和混合信号示波器(简称MSO)之分。其它的叫法都是在这两种示波器的基础上增加某些功能而已。今天的 DSO 和 MSO 可以捕获并显示重复信号或单冲信号,它们通常包括一系列自动测量和分析功能。下图是数字示波器体系结构图。数字示波器基本结构频谱分析仪频谱分析仪测量在仪器的整个频率范围内输入信号幅度随频率进行变化的情况。其最主要的用途是测量已知和未知信号的频谱功率。参加下图: 典型频谱分析仪的结构框图典型频谱分析仪的结构框图网络分析仪网络分析仪一种在微波射频电路信号系统中能在宽频带内进行扫描测量以确定网络参量的综合性微波测量仪器。全称是微波网络分析仪。尽管最初只是测量 S参数,但为了优于被测器件,现在的网络分析仪已经高度集成,并且非常先进。射频电路需要独特的测试方法。在高频内很难直接测量电压和电流,因此在测量高频器件时,必须通过它们对射频信号的响应情况来对其进行表征。网络分析仪可将已知信号发送到器件、然后对输入信号和输出信号进行定比测量,以此来实现对器件的表征。大多数网络分析仪都是矢量网络分析仪——可以同时测量幅度和相位。矢量网络分析仪是用途极广的一类仪器,它们可以表征 S 参数、匹配复数阻抗、以及进行时域测量等。网络分析仪内部框图示波器入门 - 初次使用示波器的详细步骤本文介绍如何使用 Keysight 1000B 系列示波器 - 初次使用示波器的详细步骤。步骤 1. 检查包装物品步骤 2. 打开示波器电源步骤 3. 加载默认示波器设置步骤 4. 输入波形步骤 5. 使用自动设置步骤 6. 补偿探头步骤 7. 熟悉前面板控件步骤 8. 熟悉示波器显示屏步骤 9. 使用运行控制键步骤 10. 访问内置帮助固定示波器示波器正面图片步骤 1. 检查包装物品1 检查货运包装箱是否损坏。请在检查完物品的完整性以及示波器的机械和电气性能之前,保留损坏的货运包装箱或衬垫材料。2 验证在示波器包装中是否有下列物品:• 示波器。• 电源线。• N2841A 10:1 10 MΩ 无源探头,数量= 2。• 文档 CD。• 前面板标贴(如果选择了非英语的语言选项)。3 检查示波器。步骤 2. 打开示波器电源下面几个步骤(打开示波器电源、加载默认设置和输入波形)将提供快速功能检查,以验证示波器是否能够正常工作。1 . 将电源线连接到电源。只能使用为示波器设计的电源线。使用提供所需电量的电源。 表 2 电源要求警告 - 为避免遭受电击,请确保示波器正确接地。 表 3 环境特征2. 打开示波器的电源。示波器电源开关步骤 3. 加载默认示波器设置您可以随时加载出厂默认设置,以便将示波器恢复到原始设置。 1 按下前面板的默认设置 [Default Setup] 键。2 在显示 “ 默认 ” 菜单时,按下菜单开/关 [Menu On/Off] 可关闭菜单。(可使用 “ 默认 ” 菜单中的撤消软键取消默认设置并返回到上一设置。步骤 4. 输入波形1. 将波形输入到示波器的通道。使用提供的一个无源探头从示波器的前面板输入探头补偿信号。为了避免损坏示波器,请确保 BNC 连接器上的输入电压不超过最大电压(最大值为 300 Vrms)。当测量 30V以上的电压时,请使用 10:1探头。步骤 5. 使用自动设置示波器有自动设置功能,可针对存在的输入波形自动设置示波器控件。自动设置要求波形的频率大于或等于 50 Hz,占空比大于 1%。1 按下前面板的自动设置 [Auto Scale] 键。2 在显示 “ 自动 ” 菜单时,按下菜单开/关 [Menu On/Off] 可关闭菜单。示波器将打开应用了波形的所有通道,并相应地设置垂直和水平刻度。它还根据触发源选择时基范围。所选的触发源是应用了波形的编号最高的通道。(可使用 “ 自动 ” 菜单中的撤消软键取消自动设置并返回到上一设置。)示波器已配置为下列默认控制设置: 表 4 自动设置默认设置步骤 6. 补偿探头补偿探头以使探头与输入通道匹配。只要是第一次将探头连接到输入通道,都应补偿探头。示波器低频补偿对于提供的无源探头:1 将 “ 探头 ” 菜单衰减设置为 10X。如果使用探头钩尖,请将钩尖牢固地插入探头,确保连接正确。2 将探头针尖连接到探头补偿连接器,并将接地导线连接到探头补偿器接地连接器。3 按下自动设置 [Auto Scale] 前面板键。4 如果波形不像图4 中显示的正确补偿的波形那样,则使用非金属工具调节探头上的低频补偿调整以获得尽可能平坦的方波。示波器低频补偿调整示波器低频探头补偿步骤 7. 熟悉示波器前面板控件在使用示波器之前,应熟悉前面板控件。前面板有旋钮、键和软键。最常使用旋钮来进行调整。使用键可以运行控件并通过菜单和软键更改其他示波器设置。示波器前面板示波器前面板旋钮、键和软键的定义如下:示波器前面板控件示波器前面板旋钮、键和软键的定义不同语言的前面板标贴如果选择了除英语外的语言选项,则可获得所选语言的前面板标贴。安装前面板标贴:1 将标贴左侧的卡舌插入前面板上适当的插槽中。2 轻轻将标贴按在旋钮和按钮上。3 当标贴与前面板对准时,将标贴右侧的卡舌插入前面板上的插槽中。 4 将标贴展平。它应固定在前面板上。步骤 8. 熟悉示波器显示屏示波器显示屏使用示波器软键菜单示波器软键菜单当某个示波器前面板键打开一个菜单时,可使用五个软键从菜单中选择项目。一些常用的菜单选项如下:菜单开/关 [Menu On/Off] 前面板键可关闭菜单或再次打开上次访问的菜单。使用“显示”菜单中的菜单保持项可选择菜单的显示时间 。步骤 9. 使用运行控制键有两个用于启动和停止示波器采集系统的前面板键:运行/停止 [Run/Stop] 和单次 [Single]。• 当运行/停止 [Run/Stop] 键为绿色时,表示示波器正在采集数据。要停止采集数据,可按下运行/停止 [Run/Stop]。停止后,将显示最后采集的波形。• 当运行/停止 [Run/Stop] 键为红色时,表示数据采集已停止。要开始采集数据,可按下运行/停止 [Run/Stop]。• 要捕获并显示单次采集 (不论示波器是在运行还是已停止),可按下单次[Single]。在捕获并显示了单次采集后,运行/停止 [Run/Stop] 键为红色。步骤 10. 访问内置帮助示波器具有内置快速帮助信息。访问内置帮助:1 按住要获得其快速帮助信息的前面板键、软键和可按下的旋钮。内置帮助以 11 种不同语言提供固定示波器要使 1000B 系列示波器固定到位,可使用防盗锁孔或保险环。示波器固定仪器示波器固定仪器(以上信息仅供参考。如有更改,恕不另行通知。)我们将在下一期介绍如何使用示波器水平和垂直控件、通道设置、数学波形、参考波形和显示设置。更多示波器产品信息和相关示波器的使用方法, 您可点击:是德科技编辑于 2023-03-13 07:14・IP 属地日本示波器测量仪器新手学用示波器(书籍)​赞同 5​​2 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录示波器使用方法介绍是德科技(原安捷伦)示波器的使用方法

示波器-是德科技Keysight

示波器-是德科技Keysight

这是您想要的页面.

查看搜索结果:

Choose a country or area to see content specific to your location

启用浏览器 cookies,以便改善站点的功能和性能。

Enable Javascript and browser cookies for improved site capabilities and performance.

Toggle Menu

在线咨询

联系是德科技

欢迎

我的个人信息

退出

登录

注册

确认您的国家或地区

中国

中国

日本

繁體中文

한국

Brasil

Canada

Deutschland

France

India

Malaysia

United Kingdom

United States

Australia

Austria

Belgium

Denmark

Finland

Hong Kong, China

Ireland

Israel

Italy

Mexico

Netherlands

Singapore

Spain

Sweden

Switzerland (German)

Thailand

Vietnam

更多…

请确认

确认您所在的国家/地区,以便获取相应的价格、促销、活动和联系信息等。

Select locale

确认

产品与服务

示波器

InfiniiVision数字式存储示波器

实时示波器――合规性测试

等效时间采样示波器

便携式示波器-手持、模块化和USB示波器

示波器软件

示波器探头

全部示波器  

分析仪

频谱分析仪(信号分析仪)

网络分析仪

逻辑分析仪

协议分析仪和训练器

误码率测试仪

噪声系数分析仪和噪声源

高速数字化仪和多通道数据采集解决方案

交流电源分析仪

直流电源分析仪

材料测试设备

器件电流波形分析仪

参数/器件分析仪和曲线追踪器

仪表

数字万用表DMM

相位噪声测量

功率计 + 功率传感器

53200 系列射频和通用频率计数器/计时器

LCR 表和阻抗测量产品

飞安计、皮安计和静电计

发生器,源和电源

信号发生器(信号源)

波形和函数发生器

任意波形发生器

脉冲发生器产品

HEV / EV / 电网仿真器和测试系统

直流电源

源表模块

直流电子负载

交流电源

软件

EDA 软件

仪器测量软件

仪器工作流程软件

软件测试

所有设计及测试软件  

无线

信道仿真解决方案

物联网合规性测试解决方案

无线路测

无线接入和核心网测试

无线分析仪

无线信道仿真仪

5G NR 基站测试

空中接口测试

模块化仪器

PXI 产品

AXIe 产品

数据采集系统DAQ

USB 产品

VXI 产品

参考解决方案

所有模块化产品  

网络测试与安全

应用和威胁情报

云测试

网络培训仿真器

网络测试硬件

综合流量发生器

协议和负载测试

网络安全测试工具

网络建模

全部网络安全和测试  

网络可视性

旁路交换机

时钟同步

云可视性

Network and Application Monitoring

网络流量汇聚设备(NPB)

网络分流器-是德科技 Keysight

所有网络可视化产品  

服务

KeysightCare

校准服务

维修服务

技术更新服务

测试即服务(TaaS)

网络/安全服务

咨询服务

Financial Services

Education Services

Keysight Support Portal

Used Equipment

所有服务  

其他产品

在线ICT测试系统-ICT测试仪器

面向特定应用的测试系统和组件

参数测试解决方案

光通信测试与测量产品

激光干涉仪和校准系统

单片激光合路器与精密光学产品

毫米波和微波器件

所有产品、软件和服务

 

了解

资源

使用场景

行业

活动

博客

产品专区

行业

Inside Keysight

关于 Keysight

购买

支持

是德科技产品支持

软件下载中心

欢迎

|

Exit Procurement Session

View and Transfer Cart

Discard Cart and End Procurement Session

您希望搜索哪方面的内容?

搜索

MXG Signal Generator

ENA-X Network Analyzer

UXM for Wi-Fi 7

Artificial Intelligence

寻找解决方案

需要技术支持

参加课程

查找活动

原厂翻新仪器

KeysightCare

在线购买

建议的搜索

No product matches found - System Exception

符合的结果

查看所有搜索结果

产品与服务 - 电子测试仪器

示波器

使用是德科技屡获殊荣的示波器放心地进行测量

查看所有示波器

值得信赖的示波器测量结果

无论是进行设计、调试还是执行一致性测试,您都需要使用成熟的测量技术才能获得成功。 是德科技的示波器硬件具有出色的信号完整性,高有效位数(ENOB)和非常快的波形捕获率,可以轻松捕获被测器件的真实性能。 将示波器与高级协议解码、分析和一致性测试软件搭配使用,为您提供值得信赖的测量结果。

找到更适合您的示波器

无论您是追求高信号完整性,还是希望使用便携的经济型示波器,我们都能满足您的需求。 我们的示波器产品提供了非常丰富的选择,无论您处在开发周期的哪一步,您都可以找到更合适的示波器。

InfiniiVision 实时示波器

50 MHz 至 6 GHz

利用超快的波形捕获率执行一般性日常调试,更快地捕获毛刺信号

Infiniium 实时示波器

500 MHz 至 110 GHz

利用超高带宽、超低本底噪声和高 ENOB 的示波器,轻松获得开发下一代技术时所需的信号完整性

DCA 等效时间 (采样) 示波器

18 GHz 至 100 GHz

使用采样示波器实现对高速信号的精确测量,轻松分析您的光通信器件

手持式、模块化和 USB 示波器

100 MHz 至 1 GHz

结构紧凑,品质无暇。 在更小巧、更便携的仪器上使用相同的 InfiniiVision 技术进行器件分析

查看所有系列

您需要哪款示波器探头?

是德科技为 InfiniiVision 和 Infiniium 系列示波器提供了广泛的电压、电流和光探测解决方案。

请浏览该指南,查看哪种探头更适合您的测试需求。

示波器探头选择指导

示波器探头:提升您的探测能力

了解常见的探测错误对于实现精确测量至关重要。

探头可能会将负载、噪声和抖动带入系统。 探头的电气特性不仅会显著影响测量结果,还有可能影响到器件的工作。 通过本电子书了解如何避免常见的示波器探测误区。

使用适合的工具扩展您的测试能力

通过搭配正确的附件来提高生产力;通过采用正确的 Keysight PathWave 设计和测试自动化软件来加速您的产品开发;从而让您现有的硬件发挥出更多潜在功能。

查看兼容软件

查看兼容配件

示波器软件

通过专用的协议、分析和一致性测试软件来扩展示波器的功能

示波器探头

查看是德科技丰富的电流、电压和差分示波器探头系列产品

服务

利用我们全面的校准、技术更新、金融和优化服务,提升测试水平

KeysightCare

探索预约服务方案,了解它们承诺实现的响应时间以及资产跟踪、软件更新等服务

示波器特色资源

电子书

2019.02.22

6大技巧让你的示波器物尽其用

6大技巧帮助您充分利用认知你的示波器,涵盖基本的触发功能,探头选择,信号缩放调试,正确的采集模式等等。

2019.02.22

应用指南

2019.01.30

等效时间采样示波器与实时示波器

等效时间采样示波器和实时采样示波器有着不同的触发要求,以及不同的输入波形采样方式。 了解更多信息。

2019.01.30

应用指南

2022.07.07

示波器基础知识

本篇文章概述了示波器基础知识。您将学习什么是示波器以及如何使用示波器来改善您的测量。

2022.07.07

白皮书

2019.01.14

您的示波器能否捕获难以捉摸的事件?

是德科技混合信号示波器(MSO)已成为当今许多嵌入式设备设计人员的首选工具,本文讲解为什么波形更新速率至关重要。

2019.01.14

查看所有资源

服务

查看服务

支持

查看技术支持

需要帮助或遇到问题?

联系我们

Back to Top

查看

产品与服务

解决方案

行业

活动

是德科技云课堂

翻新设备

Insights

成功案例

资源

博客

社区

合作伙伴

支持

是德科技产品支持

管理软件许可证

产品订单状态

部件

关于 Keysight

新闻

投资者关系

品质与安全

企业社会责任

多元化、公平性和包容性

供应链透明化

招贤纳士

© 是德科技 2000–2024

隐私

网站地图

条款

商标致谢

反馈

京ICP备20005161号

京公网安备 11010502040140 号

Teledyne LeCroy - 示波器

Teledyne LeCroy - 示波器

8A350197-63B6-4AE9-A506-E97B9573E47A

使用sketchtool创建。

菜单

产品中心

产品中心

示波器

示波器

示波器探头

电子测试设备

TDR 和 S 参数

生产电缆测试仪

LCR仪表

数据采集

数字万用表

电源

任意波形发生器

电子负载

逻辑分析仪

频谱分析仪

矢量网络分析仪

毫欧表

功率计

协议分析解决方案

CCIX

Compute Express Link(CXL)

以太网(EtherNet)

Fibre Channel

Gen-Z

MIPI(CSI、DSI 和 UFS)

NVM Express(NVMe)

NVMe-oF

Open Compute Projec (OCP)

PCI Express(PCIe)

Serial ATA(SATA)

Serial Attached SCSI(SAS)

USB

视频(HDMI、DisplayPort)

无线(蓝牙、802.11、802.15.4)

模块化数据采集

数字化仪

波形发生器

扩展模块

传感器和校准器

应变计服务

门槛值测试产品和服务

扭矩传感器和称重传感器

汽车扭矩测试

扭矩扳手产品和校准器

SSD 和 CXL 存储设备测试

SSD 测试解决方案

CXL 验证解决方案

服务

服务

测试

计算/网络存储

蓝牙和无线

验证

合规性

互操作性

咨询服务

阀门测试

产品与服务

培训

PCI Express(PCIe)

NVM Express(NVMe)

Compute Express Link(CXL)

USB

SAS

iSCSI

Fibre Channel

信号完整性学院

自动化

OCP

FRVS

智能测试

应用领域应用领域

内存

CCIX

CXL

DDR/LPDDR

Gen-Z

PCI Express(PCIe)

PCIe

编码方案

8b / 10b

64b / 66b

Manchester

NRZ

军用/航空/航空电子设备

ARINC 429

MIL-STD-1553

太空线

汽车行业

汽车以太网

CAN/CAN FD/J1939

FlexRay

LIN

Manchester

最多50/150

SENT

外设

Thunderbolt

USB & USB-C

嵌入式

10/100/1000Base T

音频(I2S、LJ、RJ、TDM)

DDR/LPDDR

I2C

I3C

SPI

UART-RS232

USB2-HSIC

视频

DisplayPort

HDMI

HDCP

HDBaseT技术

存储

Fibre Channel

NVMe

NVMe-oF

SAS/SATA

SSD

UFS / M-PHY

无线耳机

蓝牙

线程 (802.15.4)

Wi-Fi

MIPI

C-PHY

D-PHY

M-PHY

数字射频3G

数字RFv4

I3C

UniPro

马达和驱动器

马达和驱动器

网络

以太网(EtherNet)

电源完整性

电源完整性

电源管理

PMBus

SMBus

SPMI

USB PD

支持支持

线上资源

软件下载

技术资料库

视频库

活动与培训

文章

示波器/电压表

仪器维修和校准

安保行业

认证

ISO9000/RoHS/WEEE

联系我们

技术支持

购买

购买

促销方案获取报价

协议分析仪和配件

联系我们

登录到您的

Teledyne Lecroy 帐户

登陆

英语

德语

Français

意大利语

日本语

한국어

简体中文

繁体中文

示波器

捕捉每一个细节:从 200 MHz 到 65 GHz 始终保持 12 位分辨率

选择或比较任何示波器

Teledyne LeCroy 提供多种 8 位或 12-bit 100 MHz 至 65 GHz 的数字示波器。

带宽

分辨率

通道

存储深度

采样率

分析工具箱

带宽:

所有类型

<1 GHz

1到2 GHz

2.5到8 GHz

13到30 GHz

>30 GHz

分辨率 :

所有类型

8 bit

12 bit

渠道:

所有类型

2

4

8

16

内存长度:

所有类型

10到50 Mpts

50到250 Mpts

250 Mpts 至 1 Gpt

1 Gpt 至 5 Gpt

>5 Gpts

采样率:

所有类型

≤2.5GS/s

<5 GS/s

≥5GS/s

≥10GS/s

≥20GS/s

≥40GS/s

≥80GS/s

≥100GS/s

分析工具箱:

所有类型

基础

高级

HDO6000B

高清示波器

12-bit分辨率

350 MHz-1 GHz带宽

4通道

对比其他款式

对比其他款式

WaveRunner 8000HD

高分辨率示波器

12-bit分辨率

350 MHz-2 GHz带宽

8通道

对比其他款式

对比其他款式

MDA 8000HD

电机驱动分析仪

12-bit分辨率

350 MHz-2 GHz带宽

8通道

对比其他款式

对比其他款式

WavePro HD

高分辨率示波器

12-bit分辨率

2.5 GHz - 8GHz带宽

4通道

对比其他款式

对比其他款式

WaveMaster 8000HD

高分辨率示波器

12-bit分辨率

20 GHz - 65GHz带宽

4通道

对比其他款式

对比其他款式

WaveMaster/SDA 8 Zi-B

示波器

8位分辨率

4 GHz - 16GHz带宽

4通道

对比其他款式

对比其他款式

LabMaster 10 Zi-A

模块化示波器

8位分辨率

20 GHz - 65GHz带宽

4到80通道

对比其他款式

对比其他款式

WaveRunner 9000

示波器

8位分辨率

500 MHz-4 GHz带宽

4通道

对比其他款式

对比其他款式

WaveSurfer 4000HD

高分辨率示波器

12-bit分辨率

200 MHz-1 GHz带宽

4通道

对比其他款式

对比其他款式

HDO4000A

高分辨率示波器

12-bit分辨率

200 MHz-1 GHz带宽

4通道

对比其他款式

对比其他款式

WaveSurfer 3000z

示波器

8位分辨率

100 MHz-1 GHz带宽

4通道

对比其他款式

对比其他款式

T3DSO4000L-HD

示波器

12-bit分辨率

500 MHz-2 GHz带宽

4,8通道

对比其他款式

对比其他款式

T3DSO3000

示波器

8位分辨率

200 MHz-1 GHz带宽

4通道

对比其他款式

对比其他款式

T3DSO2000A

示波器

8位分辨率

100 MHz - 500 MHz带宽

2,4通道

对比其他款式

对比其他款式

T3DSO1000/1000A

示波器

8位分辨率

100 MHz - 350 MHz带宽

2,4通道

对比其他款式

对比其他款式

T3DSOH1000/1000-ISO

示波器

8位分辨率

100 MHz - 200 MHz带宽

2通道

对比其他款式

对比其他款式

探索我们的产品线型录

/

示波器与 始终为 12 位

高清示波器 (HDO) 在 12 MHz 至 200 GHz 带宽内始终提供 65位分辨率。

浏览

Teledyne LeCroy 高清示波器 (HDO)

远程使用示波器

使用装有 MAUI Studio Pro 的 PC,随时随地释放 Teledyne LeCroy 示波器的强大功能。 从示波器远程工作并提高工作效率。 在此处下载并注册。

浏览

强大、深入的示波器分析工具箱

Teledyne LeCroy 在处理长记录以提取有意义的见解方面拥有 50 多年的传统。 我们发明了数字示波器和许多附加波形分析工具。

浏览

示波器探头和配件

从种类繁多的探头和附件中进行选择,根据您的特定应用定制您的示波器。

差速器

从 200 MHz 到 30 GHz

≤1.5GHz

4-6 GHz

8-30 GHz

60 V 共模差分

高达 1 GHz 带宽和 60 V 共模额定值

高压差速器

高达 6 kV、400 MHz、≤ 1% 的准确度和出色的 CMRR

电流

高达 700A,灵敏度高达 1 mA/div

有源,单端

高达 4 GHz,低输入电容

高压光纤隔离

150 MHz、低负载、卓越的 CMRR

查看所有示波器探头

示波器解决方案和应用

浏览其他网页,了解更多如何使用 Teledyne LeCroy 示波器解决特定应用问题。

电源完整性测试

三相电源和电机驱动分析

车载网络 (IVN) 串行数据解决方案

PCI Express 电气测试解决方案

USB 和 USB Type-C电气测试解决方案

DDR 电气测试解决方案

CrossSync PHY 跨层分析

DisplayPort 电气测试解决方案

HDMI 电气测试解决方案

低速串行数据解决方案

高压探头

宽带隙功率器件测试

示波器资源和学习机会

现场活动

参加由行业和应用专家主办的实时网络研讨会或活动,以获得专业知识并学习如何更快地解决问题。

浏览

点播网络研讨会

访问我们的点播网络研讨会档案,以快速了解对您最重要的主题。

浏览

应用笔记

访问我们的应用说明档案,进一步了解如何将 Teledyne LeCroy 示波器、协议分析仪和其他测试工具应用于您的独特挑战。

浏览

订阅活动快讯

联系我们

索取方案演示

需要帮助或信息?

请填写此表格,让我们知道您是否愿意 订阅活动快讯,同 销售人员联系, 或者 索取方案演示

了解更多USB-TMAP2-M03-X - Mercury T2P高级分析仪USB-TMA2-M01-X - Mercury T2 USB 2.0 高级...使用电机驱动器进行六相电机分析...

解决方案

示波器

协议解决方案

模块化数据采集

传感器和校准器

测试设备和工具

购买

促销方案

获取报价

协议分析解决方案

联系我们

支持

技术资料库

视频库

软件下载

示波器固件

协议分析仪软件

联系技术支持

浏览

活动和培训

新闻发布

工作机会

关于 Teledyne LeCroy

纪念沃尔特·力克罗伊

关注 Teledyne LeCroy

英语 | 美国

英语

德语

Français

意大利语

日本语

한국어

简体中文

繁体中文

隐私政策

使用条款和法律声明

网站地图

Teledyne Technologies

版权所有©2024

示波器_百度百科

百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心示波器播报讨论上传视频电子测量仪器收藏查看我的收藏0有用+10本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。中文名示波器外文名oscilloscope属    性电子测量仪器应用学科机械工程;电测量仪器仪表领    域工程技术范    围能源目录1简介2分类3基本构成▪显示电路▪Y轴放大电路▪X轴放大电路▪扫描同步电路▪电源供给电路4基本原理▪波形显示▪双线示波▪双踪示波5仪器分类▪模拟式▪数字式6参数特征▪通道数分类▪带宽分类▪使用方法7常见故障现象及原因8测试应用▪电压的测量▪时间的测量▪相位的测量▪频率的测量9其他相关简介播报编辑示波器是一种用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。分类播报编辑按照信号的不同分类模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和超前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器的确从前台退到后台。按照结构和性能不同分类①普通示波器。电路结构简单,频带较窄,扫描线性差,仅用于观察波形。②多用示波器。频带较宽,扫描线性好,能对直流、低频、高频、超高频信号和脉冲信号进行定量测试。借助幅度校准器和时间校准器,测量的准确度可达±5%。③多线示波器。采用多束示波管,能在荧光屏上同时显示两个以上同频信号的波形,没有时差,时序关系准确。④多踪示波器。具有电子开关和门控电路的结构,可在单束示波管的荧光屏上同时显示两个以上同频信号的波形。但存在时差,时序关系不准确。⑤取样示波器。采用取样技术将高频信号转换成模拟低频信号进行显示,有效频带可达GHz级。⑥记忆示波器。采用存储示波管或数字存储技术,将单次电信号瞬变过程、非周期现象和超低频信号长时间保留在示波管的荧光屏上或存储在电路中,以供重复测试。⑦数字示波器。内部带有微处理器,外部装有数字显示器,有的产品在示波管荧光屏上既可显示波形,又可显示字符。被测信号经模一数变换器(A/D变换器)送入数据存储器,通过键盘操作,可对捕获的波形参数的数据,进行加、减、乘、除、求平均值、求平方根值、求均方根值等的运算,并显示出答案数字。基本构成播报编辑显示电路显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管由电子枪、偏转系统和荧光屏3个部分组成。(1)电子枪电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。它主要由灯丝F、阴极K、控制极G、第一阳极A1、第二阳极A2组成。除灯丝外,其余电极的结构都为金属圆筒,且它们的轴心都保持在同一轴线上。阴极被加热后,可沿轴向发射电子;控制极相对阴极来说是负电位,改变电位可以改变通过控制极小孔的电子数目,也就是控制荧光屏上光点的亮度。为了提高屏上光点亮度,又不降低对电子束偏转的灵敏度,现代示波管中,在偏转系统和荧光屏之间还加上一个后加速电极A3。第一阳极对阴极而言加有约几百伏的正电压。在第二阳极上加有一个比第一阳极更高的正电压。穿过控制极小孔的电子束,在第一阳极和第二阳极高电位的作用下,得到加速,向荧光屏方向作高速运动。由于电荷的同性相斥,电子束会逐渐散开。通过第一阳极、第二阳极之间电场的聚焦作用,使电子重新聚集起来并交汇于一点。适当控制第一阳极和第二阳极之间电位差的大小,便能使焦点刚好落在荧光屏上,显现一个光亮细小的圆点。改变第一阳极和第二阳极之间的电位差,可起调节光点聚焦的作用,这就是示波器的“聚焦”和“辅助聚焦”调节的原理。第三阳极是示波管锥体内部涂上一层石墨形成的,通常加有很高的电压,它有三个作用:①使穿过偏转系统以后的电子进一步加速,使电子有足够的能量去轰击荧光屏,以获得足够的亮度;②石墨层涂在整个锥体上,能起到屏蔽作用;③电子束轰击荧光屏会产生二次电子,处于高电位的A3可吸收这些电子。(2)偏转系统示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。当电子在偏转板之间运动时,如果偏转板上没有加电压,偏转板之间无电场,离开第二阳极后进入偏转系统的电子将沿轴向运动,射向屏幕的中心。如果偏转板上有电压,偏转板之间则有电场,进入偏转系统的电子会在偏转电场的作用下射向荧光屏的指定位置。如果两块偏转板互相平行,并且它们的电位差等于零,那么通过偏转板空间的,具有速度υ的电子束就会沿着原方向(设为轴线方向)运动,并打在荧光屏的坐标原点上。如果两块偏转板之间存在着恒定的电位差,则偏转板间就形成一个电场,这个电场与电子的运动方向相垂直,于是电子就朝着电位比较高的偏转板偏转。这样,在两偏转板之间的空间,电子就沿着抛物线在这一点上做切线运动。最后,电子降落在荧光屏上的A点,这个A点距离荧光屏原点(0)有一段距离,这段距离称为偏转量,用y表示。偏转量y与偏转板上所加的电压Vy成正比。同理,在水平偏转板上加有直流电压时,也发生类似情况,只是光点在水平方向上偏转。(3)荧光屏荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。在示波器的荧光屏内壁涂有一层发光物质,因而,荧光屏上受到高速电子冲击的地点就显现出荧光。此时光点的亮度决定于电子束的数目、密度及其速度。改变控制极的电压时,电子束中电子的数目将随之改变,光点亮度也就改变。在使用示波器时,不宜让很亮的光点固定出现在示波管荧光屏一个位置上,否则该点荧光物质将因长期受电子冲击而烧坏,从而失去发光能力。示波器实物图涂有不同荧光物质的荧光屏,在受电子冲击时将显示出不同的颜色和不同的余辉时间,通常供观察一般信号波形用的是发绿光的,属中余辉示波管,供观察非周期性及低频信号用的是发橙黄色光的,属长余辉示波管;供照相用的示波器中,一般都采用发蓝色的短余辉示波管。Y轴放大电路由于示波管的偏转灵敏度甚低,例如常用的示波管13SJ38J型,其垂直偏转灵敏度为0.86mm/V(约12V电压产生1cm的偏转量),所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波管的垂直偏转板上,以得到垂直方向的适当大小的图形。学生示波器X轴放大电路由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的图形。扫描同步电路扫描电路产生一个锯齿波电压。该锯齿波电压的频率能在一定的范围内连续可调。锯齿波电压的作用是使示波管阴极发出的电子束在荧光屏上形成周期性的、与时间成正比的水平位移,即形成时间基线。这样,才能把加在垂直方向的被测信号按时间的变化波形展现在荧光屏上。电源供给电路电源供给电路:供给垂直与水平放大电路、扫描与同步电路以及示波管与控制电路所需的负高压、灯丝电压等。由示波器的原理功能可见,被测信号电压加到示波器的Y轴输入端,经垂直放大电路加于示波管的垂直偏转板。示波管的水平偏转电压,虽然多数情况都采用锯齿电压(用于观察波形时),但有时也采用其它的外加电压(用于测量频率、相位差等时),因此在水平放大电路输入端有一个水平信号选择开关,以便按照需要选用示波器内部的锯齿波电压,或选用外加在X轴输入端上的其它电压来作为水平偏转电压。SDS1000CML此外,为了使荧光屏上显示的图形保持稳定,要求锯齿波电压信号的频率和被测信号的频率保持同步。这样,不仅要求锯齿波电压的频率能连续调节,而且在产生锯齿波的电路上还要输入一个同步信号。这样,对于只能产生连续扫描(即产生周而复始、连续不断的锯齿波)一种状态的简易示波器(如国产SB10型等示波器)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,以牵制锯齿波的振荡频率。对于具有等待扫描功能(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波,进行一次扫描)的示波器(如国产ST-16型示波器、SR-8型双踪示波器等)为了适应各种需要,同步(或触发)信号可通过同步或触发信号选择开关来选择,通常来源有3个:①从垂直放大电路引来被测信号作为同步(或触发)信号,此信号称为“内同步”(或“内触发”)信号;②引入某种相关的外加信号为同步(或触发)信号,此信号称为“外同步”(或“外触发”)信号,该信号加在外同步(或外触发)输入端;③有些示波器的同步信号选择开关还有一档“电源同步”,是由220V,50Hz电源电压,通过变压器次级降压后作为同步信号。基本原理播报编辑波形显示由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为Vo(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3、4、…、8点。在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。如果将一随时间线性变化的电压(如锯齿波电压)加到一对偏转板上,则光点在荧光屏上又会怎样移动呢?当水平偏转板上有锯齿波电压时,在时间t=0瞬间,电压为Vo(最大负值),荧光屏上光点在坐标原点左侧的起始位置(零点上),位移的距离正比于电压Vo;在时间t=1的瞬间,电压为V1(负值),荧光屏上光点在坐标原点左方的1点上,位移的距离正比于电压V1;以此类推,在时间t=2,t=3,...,t=8的各个瞬间,荧光屏上光点的对应位置是2、3、…、8各点。在t=8这个瞬间,锯齿波电压由最大正值V8跃变到最大负值Vo,则荧光屏上光点从8点极其迅速地向左移到起始位置零点。如果锯齿波电压是周期性的,则在锯齿波电压的第二个周期、第三个周期、……都将重复第一个周期的情形。如果此时加在水平偏转板上的锯齿波电压频率很低,仅为1Hz ~2Hz,在荧光屏上便会看见光点自左边起始位置零点向右边8点处匀速地移动,随后光点又从右边8点处极其迅速地移动到左边起始位置零点。上述这个过程称为扫描。在水平轴加有周期性锯齿波电压时,扫描将周而复始地进行下去。光点距离起始位置零点的瞬时值,将与加在偏转板上的电压瞬时值成正比。如果加在偏转板上的锯齿波电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,就看到一根水平亮线,该水平亮线的长度,在示波器水平放大增益一定的情况下决定于锯齿波电压值,锯齿波电压值是与时间变化成正比的,而荧光屏上光点的位移又是与电压值成正比的,因此荧光屏上的水平亮线可以代表时间轴。在此亮线上的任何相等的线段都代表相等的一段时间。如果将被测信号电压加到垂直偏转板上,锯齿波扫描电压加到水平偏转板上,而且被测信号电压的频率等于锯齿波扫描电压的频率,则荧光屏上将显示出一个周期的被测信号电压随时间变化的波形曲线。在被测周期信号的第二个周期、第三个周期……都重复第一个周期的情形,光点在荧光屏上描出的轨迹也都重叠在第一次描出的轨迹上。所以,荧光屏上显示出来的被测信号电压是随时间变化的稳定波形曲线。为使荧光屏上的图形稳定,被测信号电压的频率应与锯齿波电压的频率保持整数比的关系,即同步关系。为了实现这一点,就要求锯齿波电压的频率连续可调,以便适应观察各种不同频率的周期信号。其次,由于被测信号频率和锯齿波振荡信号频率的相对不稳定性,即使把锯齿波电压的频率临时调到与被测信号频率成整倍数关系,也不能使图形一直保持稳定。因此,示波器中都设有同步装置。也就是在锯齿波电路的某部分加上一个同步信号来促使扫描的同步,对于只能产生连续扫描(即产生周而复始连续不断的锯齿波)一种状态的简易示波器(如国产SB-10型示波器等)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,当所加同步信号的频率接近锯齿波频率的自主振荡频率(或接近其整数倍)时,就可以把锯齿波频率“拖入同步”或“锁住”。对于具有等待扫描(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波进行一次扫描)功能的示波器(如国产ST-16型示波器、SBT-5型同步示波器、SR-8型双踪示波器等等)而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。这样,只要按照需要来选择适当的同步信号或触发信号,便可使任何欲研究的过程与锯齿波扫描频率保持同步。SHS1000双线示波在电子实践技术过程中,常常需要同时观察两种(或两种以上)信号随时间变化的过程。并对这些不同信号进行电量的测试和比较。为了达到这个目的,人们在应用普通示波器原理的基础上,采用了以下两种同时显示多个波形的方法:一种是双线(或多线)示波法;另一种是双踪(或多踪)示波法。应用这两种方法制造出来的示波器分别称为双线(或多线)示波器和双踪(或多踪)示波器。双线(或多线)示波器是采用双枪(或多枪)示波管来实现的。下面以双枪示波管为例加以简单说明。双枪示波管有两个互相独立的电子枪产生两束电子。另有两组互相独立的偏转系统,它们各自控制一束电子作上下、左右的运动。荧光屏是共用的,因而屏上可以同时显示出两种不同的电信号波形,双线示波也可以采用单枪双线示波管来实现。这种示波管只有一个电子枪,在工作时是依靠特殊的电极把电子分成两束。然后,由管内的两组互相独立的偏转系统,分别控制两束电子上下、左右运动。荧光屏是共用的,能同时显示出两种不同的电信号波形。由于双线示波管的制造工艺要求高,成本也高,所以应用并不十分普遍。双踪示波双踪(或多踪)示波是在单线示波器的基础上,增设一个专用电子开关,用它来实现两种(或多种)波形的分别显示。由于实现双踪(或多踪)示波比实现双线(或多线)示波来得简单,不需要使用结构复杂、价格昂贵的“双腔”或“多腔”示波管,所以双踪(或多踪)示波获得了普遍的应用。为了保持荧光屏显示出来的两种信号波形稳定,则要求被测信号频率、扫描信号频率与电子开关的转换频率三者之间必须满足一定的关系。首先,两个被测信号频率与扫描信号频率之间应该是成整数比的关系,也就是要求“同步”。这一点与单线示波器的原理是相同的,区别在于被测信号是两个,而扫描电压是一个。在实际应用中,需要观察和比较的两个信号常常是互相有内在联系的,所以上述的同步要求一般是容易满足的。为了使荧光屏上显示的两个被测信号波形都稳定,除满足上述要求外,还必须合理地选择电子开关的转换频率,使得在示波器上所显示的波形个数合适,以便于观察。下面谈谈电子开关的工作方式问题,这个问题与电子开关的转换频率有关。电子开关的工作方式有“交替”转换和“断续”转换两种。采用交替转换工作方式的显示的波形与双线示波法所显示的波形非常相似,它们都没有间断点。但由于被测信号UA、UB的波形是依次交替地出现在荧光屏上的,所以,如果交替的间隙时间超过了人眼的视觉暂留时间和荧光屏的余辉时间,则人们所看到的荧光屏上的波形就会有闪烁现象。为了避免这种情况的出现,就要求电子开关有足够高的转换频率。这就是说当被测信号的频率较低时,不宜采用交替转换工作方式,而应采用断续转换工作方式。当电子开关用断续转换工作方式时,在X轴扫描的每一个过程中,电子开关都以足够高的转换频率,分别对所显示的每个被测信号进行多次取样。这样,即使被测信号频率较低,也可避免出现波形的闪烁现象。双踪示波器的主要是由两个通道的Y轴前置放大电路、门控电路、电子开关、混合电路、延迟电路、Y轴后置放大电路、触发电路、扫描电路、X轴放大电路、Z轴放大电路、校准信号电路、示波管和高低压电源供给电路等组成。当显示方式开关置于交替位置时,电子开关为一双稳态电路。它受由扫描电路来的闸门信号控制,使得Y轴两个前置通道随着扫描电路门信号的变化而交替地工作。每秒钟交替转换次数与由扫描电路产生的扫描信号的重复频率有关。交替工作状态适用于观察频率不太低的被测信号。为了观察被测信号随时间变化的波形,示波管的水平偏转板上必须加以线性扫描电压(锯齿波电压)。这个扫描电压是由扫描电路产生的。当触发信号加到触发电路时,触发了扫描电路,扫描电路就产生相应的扫描信号;当不加触发信号时,扫描电路就不产生扫描信号。触发有内触发、外触发两种,由触发选择开关来选择。当该开关置于内的位置时,触发信号来自经Y轴通道送入的被测信号。当该开关置于外的位置时,触发信号是由外部送入的。这个信号应与被测信号的频率成整数比的关系。示波器在使用中,多数采用内触发工作方式。高、低压电源供给电路中的低压是供给示波器各级所需的低压电源的,高压是供给示波管显示系统电源的。仪器分类播报编辑示波器可以分为模拟示波器和数字示波器,对于大多数的电子应用,无论模拟示波器和数字示波器都是可以胜任的,只是对于一些特定的应用,由于模拟示波器和数字示波器所具备的不同特性,才会出现适合和不适合的地方。模拟式模拟示波器的工作方式是直接测量信号电压,并且通过从左到右穿过示波器屏幕的电子束在垂直方向描绘电压。数字式数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和超前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器的确从前台退到后台。 [1]波形示例(5张)右图为数字示波器的实拍波形图。参数特征播报编辑通道数分类通常无论是模拟示波器还是数字示波器,可以根据其通道数分为:单通道/单踪示波器;双通道/双踪示波器;2+1通道(1外部触发)/三踪示波器;四通道/四踪示波器。带宽分类带宽是根据示波器测试要求来定,5M/10M/20M/40M/60M/100M/1G......等分类选型。使用方法示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。以SR-8型双踪示波器为例介绍。(一)模拟示波器面板装置SR-8型双踪示波器的面板图如上图所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。1.显示部分主要控制件为:(1)电源开关。(2)电源指示灯。(3)辉度 调整光点亮度。(4)聚焦调整光点或波形清晰度。(5)辅助聚焦 配合“聚焦”旋钮调节清晰度。(6)标尺亮度调节坐标片上刻度线亮度。(7)寻迹 当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。(8)标准信号输出1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度。2.Y轴插件部分(1)显示方式选择开关用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式:“交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。“断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。“YA”、“YB ”:显示方式开关置于“YA ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“YA”或“YB ”通道的信号波形。“YA + YB”:显示方式开关置于“YA + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。(2)“DC-⊥-AC”Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。(3)“微调V/div”灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。(4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。(5)“↑↓” Y轴位移电位器,用以调节波形的垂直位置。(6)“极性、拉YA ”YA 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - YA 。(7)“内触发、拉YB ”触发源选择开关。在按的位置上(常态) 扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。(8)Y轴输入插座采用BNC型插座,被测信号由此直接或经探头输入。3.X轴插件部分(1)“t/div” 扫描速度选择开关及微调旋钮。X轴的光点移动速度由其决定,从0.2μs~1s共分21档级。当该开关“微调”电位器顺时针方向旋转到底并接上开关后,即为“校准”位置,此时“t/div”的指示值,即为扫描速度的实际值。(2)“扩展、拉×10”扫描速度扩展装置。是按拉式开关,在按的状态作正常使用,拉的位置扫描速度增加10倍。“t/div”的指示值,也应相应计取。采用“扩展 拉×10”适于观察波形细节。(3)“→←” X轴位置调节旋钮。系X轴光迹的水平位置调节电位器,是套轴结构。外圈旋钮为粗调装置,顺时针方向旋转基线右移,反时针方向旋转则基线左移。置于套轴上的小旋钮为细调装置,适用于经扩展后信号的调节。(4)“外触发、X外接”插座采用BNC型插座。在使用外触发时,作为连接外触发信号的插座。也可以作为X轴放大器外接时信号输入插座。其输入阻抗约为1MΩ。外接使用时,输入信号的峰值应小于12V。(5)“触发电平”旋钮 触发电平调节电位器旋钮。用于选择输入信号波形的触发点。具体地说,就是调节开始扫描的时间,决定扫描在触发信号波形的哪一点上被触发。顺时针方向旋动时,触发点趋向信号波形的正向部分,逆时针方向旋动时,触发点趋向信号波形的负向部分。(6)“稳定性”触发稳定性微调旋钮。用以改变扫描电路的工作状态,一般应处于待触发状态。调整方法是将Y轴输入耦合方式选择(AC-地-DC)开关置于地档,将V/div开关置于最高灵敏度的档级,在电平旋钮调离自激状态的情况下,用小螺丝刀将稳定度电位器顺时针方向旋到底,则扫描电路产生自激扫描,此时屏幕上出现扫描线;然后逆时针方向慢慢旋动,使扫描线刚消失。此时扫描电路即处于待触发状态。在这种状态下,用示波器进行测量时,只要调节电平旋钮,即能在屏幕上获得稳定的波形,并能随意调节选择屏幕上波形的起始点位置。少数示波器,当稳定度电位器逆时针方向旋到底时,屏幕上出现扫描线;然后顺时针方向慢慢旋动,使屏幕上扫描线刚消失,此时扫描电路即处于待触发状态。(7)“内、外” 触发源选择开关。置于“内”位置时,扫描触发信号取自Y轴通道的被测信号;置于“外”位置时,触发信号取自“外触发X 外接”输入端引入的外触发信号。(8)“AC”“AC(H)”“DC”触发耦合方式开关。 “DC”档,是直流藕合状态,适合于变化缓慢或频率甚低(如低于100Hz)的触发信号。“AC”档,是交流藕合状态,由于隔断了触发中的直流分量,因此触发性能不受直流分量影响。“AC(H)”档,是低频抑制的交流耦合状态,在观察包含低频分量的高频复合波时,触发信号通过高通滤波器进行耦合,抑制了低频噪声和低频触发信号(2MHz以下的低频分量),免除因误触发而造成的波形幌动。(9)“高频、常态、自动”触发方式开关。用以选择不同的触发方式,以适应不同的被测信号与测试目的。“高频”档,频率甚高时(如高于5MHz),且无足够的幅度使触发稳定时,选该档。此时扫描处于高频触发状态,由示波器自身产生的高频信号(200kHz信号),对被测信号进行同步。不必经常调整电平旋钮,屏幕上即能显示稳定的波形,操作方便,有利于观察高频信号波形。“常态”档,采用来自Y轴或外接触发源的输入信号进行触发扫描,是常用的触发扫描方式。“自动”挡,扫描处于自动状态(与高频触发方式相仿),但不必调整电平旋钮,也能观察到稳定的波形,操作方便,有利于观察较低频率的信号。(10)“+、-”触发极性开关。在“+”位置时选用触发信号的上升部分,在“-”位置时选用触发信号的下降部分对扫描电路进行触发。(二)使用前的检查示波器初次使用前或久藏复用时,有必要进行一次能否工作的简单检查和进行扫描电路稳定度、垂直放大电路直流平衡的调整。示波器在进行电压和时间的定量测试时,还必须进行垂直放大电路增益和水平扫描速度的校准。示波器能否正常工作的检查方法、垂直放大电路增益和水平扫描速度的校准方法,由于各种型号示波器的校准信号的幅度、频率等参数不一样,因而检查、校准方法略有差异。(三)使用步骤用示波器能观察各种不同电信号幅度随时间变化的波形曲线,在这个基础上示波器可以应用于测量电压、时间、频率、相位差和调幅度等电参数。下面介绍用示波器观察电信号波形的使用步骤。1.选择Y轴耦合方式根据被测信号频率的高低,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC。2.选择Y轴灵敏度根据被测信号的大约峰-峰值(如果采用衰减探头,应除以衰减倍数;在耦合方式取DC档时,还要考虑叠加的直流电压值),将Y轴灵敏度选择V/div开关(或Y轴衰减开关)置于适当档级。实际使用中如不需读测电压值,则可适当调节Y轴灵敏度微调(或Y轴增益)旋钮,使屏幕上显现所需要高度的波形。3.选择触发(或同步)信号来源与极性通常将触发(或同步)信号极性开关置于“+”或“-”档。4.选择扫描速度根据被测信号周期(或频率)的大约值,将X轴扫描速度t/div(或扫描范围)开关置于适当档级。实际使用中如不需读测时间值,则可适当调节扫速t/div微调(或扫描微调)旋钮,使屏幕上显示测试所需周期数的波形。如果需要观察的是信号的边沿部分,则扫速t/div开关应置于最快扫速档。5.输入被测信号被测信号由探头衰减后(或由同轴电缆不衰减直接输入,但此时的输入阻抗降低、输入电容增大),通过Y轴输入端输入示波器。常见故障现象及原因播报编辑没有光点或波形电源未接通。辉度旋钮未调节好。X,Y轴移位旋钮位置调偏。Y轴平衡电位器调整不当,造成直流放大电路严重失衡。水平方向展不开触发源选择开关置于外档,且无外触发信号输入,则无锯齿波产生。电平旋钮调节不当。稳定度电位器没有调整在使扫描电路处于待触发的临界状态。X轴选择误置于X外接位置,且外接插座上又无信号输入。两踪示波器如果只使用A通道(B通道无输入信号),而内触发开关置于拉YB位置,则无锯齿波产生。垂直方向无展示输入耦合方式DC-接地-AC开关误置于接地位置。输入端的高、低电位端与被测电路的高、低电位端接反。输入信号较小,而V/div误置于低灵敏度档。波形不稳定稳定度电位器顺时针旋转过度,致使扫描电路处于自激扫描状态(未处于待触发的临界状态)。触发耦合方式AC、AC(H)、DC开关未能按照不同触发信号频率正确选择相应档级。选择高频触发状态时,触发源选择开关误置于外档(应置于内档。)部分示波器扫描处于自动档(连续扫描)时,波形不稳定。垂直线条密集或呈现一矩形t/div开关选择不当,致使f扫描<水平线条密集或呈一条倾斜水平线t/div关选择不当,致使f扫描>>f信号。垂直方向的电压读数不准未进行垂直方向的偏转灵敏度(v/div)校准。进行v/div校准时,v/div微调旋钮未置于校正位置(即顺时针方向未旋足)。进行测试时,v/div微调旋钮调离了校正位置(即调离了顺时针方向旋足的位置)。使用10 :1衰减探头,计算电压时未乘以10倍。被测信号频率超过示波器的最高使用频率,示波器读数比实际值偏小。测得的是峰-峰值,正弦有效值需换算求得。水平方向的读数不准未进行水平方向的偏转灵敏度(t/div)校准。进行t/div校准时,t/div微调旋钮未置于校准位置(即顺时针方向未旋足)。进行测试时,t/div微调旋钮调离了校正位置(即调离了顺时针方向旋足的位置)。扫速扩展开关置于拉(×10)位置时,测试未按t/div开关指示值提高灵敏度10倍计算。交直流叠加信号的直流电压值分辨不清Y轴输入耦合选择DC-接地-AC开关误置于AC档(应置于DC档)。测试前未将DC-接地-AC开关置于接地档进行直流电平参考点校正。Y轴平衡电位器未调整好。测不出两个信号间的相位差测不出两个信号间的相位差(波形显示法)双踪示波器误把内触发(拉YB)开关置于按(常态)位置应把该开关置于拉YB位置。双踪示波器没有正确选择显示方式开关的交替和断续档。单线示波器触发选择开关误置于内档。单线示波器触发选择开关虽置于外档,但两次外触发未采用同一信号。调幅波形失常t/div开关选择不当,扫描频率误按调幅波载波频率选择(应按音频调幅信号频率选择)。波形调不到要求的起始时间和部位稳定度电位器未调整在待触发的临界触发点上。触发极性(+、-)与触发电平(+、-)配合不当。触发方式开关误置于自动档(应置于常态档)。触发或同步扫描缓缓调节触发电平(或同步)旋钮,屏幕上显现稳定的波形,根据观察需要,适当调节电平旋钮,以显示相应起始位置的波形。如果用双踪示波器观察波形,作单踪显示时,显示方式开关置于YA或YB。被测信号通过YA或YB输入端输入示波器。Y轴的触发源选择“内触发一拉YB”开关置于按(常态)位置。若示波器作两踪显示时,显示方式开关置于交替档(适用于观察频率不太低的信号),或断续档(适用于观察频率不太高的信号),此时Y轴的触发源选择“内触发-拉YB”开关置“拉YB”档。使用不当造成的异常现象示波器在使用过程中,往往由于操作者对于示波原理不甚理解和对示波器面板控制装置的作用不熟悉,会出现由于调节不当而造成异常现象。测试应用播报编辑电压的测量利用示波器所做的任何测量,都是归结为对电压的测量。示波器可以测量各种波形的电压幅度,既可以测量直流电压和正弦电压,又可以测量脉冲或非正弦电压的幅度。更有用的是它可以测量一个脉冲电压波形各部分的电压幅值,如上冲量或顶部下降量等。这是其他任何电压测量仪器都不能比拟的。1.直接测量法所谓直接测量法,就是直接从屏幕上量出被测电压波形的高度,然后换算成电压值。定量测试电压时,一般把Y轴灵敏度开关的微调旋钮转至“校准”位置上,这样,就可以从“V/div”的指示值和被测信号占取的纵轴坐标值直接计算被测电压值。所以,直接测量法又称为标尺法。(1)交流电压的测量将Y轴输入耦合开关置于“AC”位置,显示出输入波形的交流成分。如交流信号的频率很低时,则应将Y轴输入耦合开关置于“DC”位置。将被测波形移至示波管屏幕的中心位置,用“V/div”开关将被测波形控制在屏幕有效工作面积的范围内,按坐标刻度片的分度读取整个波形所占Y轴方向的度数H,则被测电压的峰-峰值VP-P可等于“V/div”开关指示值与H的乘积。如果使用探头测量时,应把探头的衰减量计算在内,即把上述计算数值乘10。例如示波器的Y轴灵敏度开关“V/div”位于0.2档级,被测波形占Y轴的坐标幅度H为5div,则此信号电压的峰-峰值为1V。如是经探头测量,仍指示上述数值,则被测信号电压的峰-峰值就为10V。(2)直流电压的测量将Y轴输入耦合开关置于“地”位置,触发方式开关置“自动”位置,使屏幕显示一水平扫描线,此扫描线便为零电平线。将Y轴输入耦合开关置“DC”位置,加入被测电压,此时,扫描线在Y轴方向产生跳变位移H,被测电压即为“V/div”开关指示值与H的乘积。直接测量法简单易行,但误差较大。产生误差的因素有读数误差、视差和示波器的系统误差(衰减器、偏转系统、示波管边缘效应)等。2.比较测量法比较测量法就是用一已知的标准电压波形与被测电压波形进行比较求得被测电压值。将被测电压Vx输入示波器的Y轴通道,调节Y轴灵敏度选择开关“V/div”及其微调旋钮,使荧光屏显示出便于测量的高度Hx并做好记录,且“V/div”开关及微调旋钮位置保持不变。去掉被测电压,把一个已知的可调标准电压Vs输入Y轴,调节标准电压的输出幅度,使它显示与被测电压相同的幅度。此时,标准电压的输出幅度等于被测电压的幅度。比较法测量电压可避免垂直系统引起和误差,因而提高了测量精度。时间的测量示波器时基能产生与时间呈线性关系的扫描线,因而可以用荧光屏的水平刻度来测量波形的时间参数,如周期性信号的重复周期、脉冲信号的宽度、时间间隔、上升时间(前沿)和下降时间(后沿)、两个信号的时间差等等。将示波器的扫速开关“t/div”的“微调”装置转至校准位置时,显示的波形在水平方向刻度所代表的时间可按“t/div”开关的指示值直读计算,从而较准确地求出被测信号的时间参数。相位的测量利用示波器测量两个正弦电压之间的相位差具有实用意义,用计数器可以测量频率和时间,但不能直接测量正弦电压之间的相位关系。利用示波器测量相位的方法很多,下面,仅介绍几种常用的简单方法。1.双踪法双踪法是用双踪示波器在荧光屏上直接比较两个被测电压的波形来测量其相位关系。测量时,将相位超前的信号接入YB通道,另一个信号接入YA通道。选用YB触发。调节“t/div”开关,使被测波形的一个周期在水平标尺上准确地占满8div,这样,一个周期的相角360°被8等分,每1div相当于45°。读出超前波与滞后波在水平轴的差距T,按下式计算相位差φ:φ=45°/div×T(div)如T==1.5div ,则φ=45°/div×1.5div=67.5°2.图形法测相位将示波器的X轴选择置于X轴输入位置,将信号u1接入示波器的Y轴输入端,信号u2接入示波器的X轴输入端。适当调节示波器面板上相关旋钮,使荧光屏上显现一个大小适宜的椭圆(在特殊情况下,可能是一个正圆或一根斜线)。设Y轴偏转板上的信号u1导前于X轴偏转板上的信号u21/8周期,设u2的初相为零,即φ2=0,因此当u2为零时,u1为一个较大的值。如图中的“0”点。此时,荧光屏上的光点也相应地位于“0”点。随着时间的变化,u1上升,u2也上升,则荧光屏上的光点向右上方移动。当经1/8周期后,u1、u2分别到达“1”点,此时u1到达最大值,u2为一个较大的值,荧光屏上的光点位于相应的“1”。如此继续下去,荧光屏上的光点将描出一个顺时针旋转的椭圆。如果u1滞后于u2则形成一个逆时针旋转的椭圆。当然,这只有在信号频率很低时(如几赫兹),且在短余辉的荧光屏上便会清楚地看到荧光屏上的光点顺时针或逆时针旋转的现象。由上述可见椭圆的形状是随两个正弦信号电压u1、u2相位差的不同而不同。因此可以根据椭圆的形状确定两个正弦信号之间的相位差Δφ。设A是椭圆与Y轴交点的纵坐标,B是椭圆上各点坐标的最大值。由图可见,A是对应于t=0时u1的瞬时电压,即A=Um1sinφ1B是对应于u1的幅值,即B=Um1于是A/B=(Um1sinφ1)/ Um1= sinφ1来表示。在实际测试中为读数方便,常读取2A,2B(或2C,2D),按式Δφ=arc sin(2A/2B)或Δφ=arc sin(2C/2D)来计算相位差。如果椭圆的主轴在第1和第3象限内,则相位差在0°~90°或270°~360°之间;如果主轴在第2和第4象限内,相位差在90°~180°或180°~270°之间。频率的测量用示波器测量信号频率的方法很多,下面介绍常用的两种基本方法。1.周期法对于任何周期信号,可用前述的时间间隔的测量方法,先测定其每个周期的时间T,再用下式求出频率f :f=1/T例如示波器上显示的被测波形,一周期为8div,“t/div”开关置“1μs”位置,其“微调”置“校准”位置。则其周期和频率计算如下:T=1us/div×8div = 8usf= 1/8us =125kHz所以,被测波形的频率为125kHz。2.图形法测频率将示波器置X-Y工作方式,被测信号输入Y轴,标准频率信号输入“X外接”,慢慢改变标准频率,使这两个信号频率成整数倍时,例如fx :fy=1:2,则在荧光屏上会形成稳定的图形。图的形状不但与两个偏转电压的相位有关,而且与两个偏转电压的频率也有关。用描迹法可以画出ux与uy的各种频率比、不同相位差时的图形。利用图形与频率的关系,可进行准确的频率比较来测定被测信号的频率。其方法是分别通过图形引水平线和垂直线,所引的水平线垂直线不要通过图形的交叉点或与其相切。若水平线与图形的交点数为m,垂直线与图形的交点数n,则fy / fx=m / n当标准频率fx(或fy)为已知时,由上式可以求出被测信号频率fy(或fx)。显然,在实际测试工作中,用李沙育图形进行频率测试时,为了使测试简便正确,在条件许可的情况下,通常尽可能调节已知频率信号的频率,使荧光屏上显示的图形为圆或椭圆。这时被测信号频率等于已知信号频率。由于加到示波器上的两个电压相位不同,荧光屏上图形会有不同的形状,但这对确定未知频率并无影响。其他相关播报编辑注意事项仪器操作人员的安全和仪器安全,仪器在安全范围内正常工作,保证测量波形准确、数据可靠,应注意:1.通用示波器通过调节亮度和聚焦旋钮使光点直径最小以使波形清晰,减小测试误差;不要使光点停留在一点不动,否则电子束轰击一点宜在荧光屏上形成暗斑,损坏荧光屏。2.测量系统- 例如示波器、信号源;打印机、计算机等设备等。被测电子设备- 例如仪器、电子部件、电路板、被测设备供电电源等设备接地线必须与公共地(大地)相连。3. TDS200/TDS1000/TDS2000 系列数字示波器配合探头使用时,只能测量(被测信号- 信号地就是大地,信号端输出幅度小于300V CAT II)信号的波形。绝对不能测量市电AC220V 或与市电AC220V 不能隔离的电子设备的浮地信号。(浮地是不能接大地的,否则造成仪器损坏,如测试电磁炉。)4.通用示波器的外壳,信号输入端BNC 插座金属外圈,探头接地线,AC220V 电源插座接地线端都是相通的。如仪器使用时不接大地线,直接用探头对浮地信号测量,则仪器相对大地会产生电位差;电压值等于探头接地线接触被测设备点与大地之间的电位差。这将对仪器操作人员、示波器、被测电子设备带来严重安全危险。5. 用户如须要测量开关电源(开关电源初级,控制电路) 、UPS(不间断电源)、电子整流器、节能灯、变频器等类型产品或其它与市电AC220V 不能隔离的电子设备进行浮地信号测试时,必使用DP100高压隔离差分探头。数字示波器示波器使用中的其他注意事项:(1)热电子仪器一般要避免频繁开机、关机,示波器也是这样。(2)如果发现波形受外界干扰,可将示波器外壳接地。(3)“Y输入”的电压不可太高,以免损坏仪器,在最大衰减时也不能超过400 V.“Y输入”导线悬空时,受外界电磁干扰出现干扰波形,应避免出现这种现象。(4)关机前先将辉度调节旋钮沿逆时针方向转到底,使亮度减到最小,然后再断开电源开关。(5)在观察荧屏上的亮斑并进行调节时,亮斑的亮度要适中,不能过亮。示波器分为万用示波表,数字示波器,模拟示波器,虚拟示波器,任意波形示波器,手持示波表,数字荧光示波器,数据采集示波器 [1]。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

示波器的使用方法 - 示波器的基本实验 - 知乎

示波器的使用方法 - 示波器的基本实验 - 知乎切换模式写文章登录/注册示波器的使用方法 - 示波器的基本实验是德科技 Keysight Technologies​已认证账号本文适用于在校电子工程和物理专业学生的示波器实验室指南和教程。本示波器实验指南和教程适用于随教育培训套件 (DSOXEDK) 一同许可的 Keysight InfiniiVision 2000, 3000 X 系列示波器和4000 X 系列示波器。基本示波器和波形发生器测量实验示波器基本实验 #1:对正弦波执行测量示波器基本实验 #2:了解示波器触发的基本知识 示波器基本实验 #3:触发噪声信号示波器基本实验#4:记录和保存示波器测试结果示波器基本实验 #5:补偿 10:1 无源探头示波器基本实验 #6:使用内置函数发生器生成波形示波器入门使用方法 - 什么是示波器?对于如今的模拟和数字电路来说,示波器是进行电压和定时测量的重要工具。当您最终从电子工程学校毕业,进入电子行业工作时,您可能会发现在测试、验证和调试设计方面,使用示波器这一测量工具的频率要比任何其他仪器都要高得多。即使是在特定大学里学习电子工程或物理专业的课程期间,示波器这一测量工具也是在各个电路实验中用来测试和验证实验作业及设计的最常用仪器。遗憾的是,许多学生永远都不能完全掌握如何使用示波器。他们的使用模式通常是某个随机旋钮和按钮,直到示波器显示屏上奇幻般出现一个与他们要寻找的效果接近的图片。但愿在完成这一系列简短的实验后,您会对示波器是什么以及如何更有效地使用它有了更好的了解。那么,什么是示波器?示波器是一种电子测量仪器,可以在无干扰的情况下监控输入信号,随后以图形方式采用简单的电压与时间格式显示这些信号。您的教授在其学生时代使用的这类示波器可能就是完全基于模拟技术的示波器。这些采用早期技术的示波器通常称为模拟示波器,具有限定的带宽,不执行任何种类的自动测量,而且要求输入信号是重复的 (连续出现并重复输入信号)。您将在这一系列实验中 (可能会贯穿大学及研究生学习的其余时间)使用的这类示波器称为数字存储示波器,有时仅称为 DSO。或者,您可以使用混合信号示波器,该示波器将传统的 DSO 测量模拟与逻辑分析测量相结合,有时称为 MSO。请注意,所有的数字实时示波器基本上只有DSO和MSO之分。其它的叫法都是在这两种示波器的基础上增加某些功能而已。今天的 DSO 和 MSO 可以捕获并显示重复信号或单冲信号,它们通常包括一系列自动测量和分析功能,借助这些功能您可以比您的教授在学生时代更快速、更准确地体现设计和学生实验的特征。快速了解如何使用示波器以及示波器有何功能的最佳方式是首先了解示波器上的一些最重要的控件,然后只需开始使用其中一个测量一些基本的信号,如正弦波。获得 DSOXEDK 教育培训套件选项的许可后,Keysight TechnologiesInfiniiVision 2000 和 3000 X 系列示波器(在图 1 中显示)便会产生模拟和数字培训信号。我们将在这一系列简短实验中使用其中许多信号,帮助您了解如何使用示波器这一最重要的电子信号测量仪器。Keysight InfiniiVision 2000/3000 X 系列示波器执行示波器测量时的第一项任务通常是将示波器探头连接在测试设备与示波器的输入 BNC 接口之间。示波器探头在测试点提供相对较高的输入阻抗端子功能(高电阻,低电容)。高阻抗连接对于将测量仪器与测试电路分隔开来非常重要,因为我们不希望示波器及其探头改变测试信号的特征。有多种不同种类的示波器探头可用于特定类型的测量,但是您今天将使用的探头是最常用的探头类型,称为 10:1 无源电压探头,如图 2 所示。“无源”仅意味着此类型的探头不包括任何“有源”组件,如晶体管和放大器。“10:1”意味着此探头将以 10 为常量衰减示波器输入中接收的输入信号。图2. 无源 10:1 电压探头使用标准的 10:1 无源探头时,应在信号测试点与地面之间执行所有的示波器测量。换句话说,您必须 将探头的接地夹接地。若被测点是浮地的,我们不建议使用此类探头直接测量电路中组件之间的相对电压。如果需要测量未接地组件内的电压,则在使用示波器的两条通道相对于地面测量组件两端的信号时,可以使用示波器的减法数学函数(在实验 #13 期间介绍),或者可以使用特殊的差分有源探头。另外还应注意,绝不应使示波器的部件成为被测电路功能结构的一部分。图 3 显示了使用示波器的默认 1 MΩ 输入选择 (这是使用此类探头时必需的)连接到示波器时的 10:1 无源探头的电子模型。请注意,许多较高带宽的示波器还具有用户可选择的 50 Ω 输入端子选择,这种选择通常用于有源探头端子和/或使用 50 Ω BNC 同轴电缆从 50 Ω 电源直接输入信号时。图3. 连接到示波器的 1 MΩ 输入阻抗的 10:1 无源探头的简化示意图尽管无源探头和示波器的电子模型包括固有/寄生电容 (非设计)以及特意设计的补偿电容网络,但是现在让我们忽略这些电容元件,并分析低频或直流电输入条件下此探头/示波器系统的理想信号行为。从探头/示波器电子模型中删除所有的电容组件后,只剩下与示波器的 1 MΩ 输入阻抗串联的 9 MΩ 探头端部电阻。探头端部的净输入电阻则为 10 MΩ。使用欧姆定律,您会发现示波器输入处接收的电压电平将为探头端部处电压电平的 1/10 (Vscope = Vprobe x (1 MΩ/10 MΩ))。这意味着,使用 10:1 无源探头时,示波器测量系统的动态范围已被扩展。换句话说,与使用 1:1 探头测量的信号相比,您测量的信号幅度可高出 10 倍。此外,示波器测量系统 (探头 + 示波器)的输入阻抗将从 1 MΩ 增加到 10 MΩ。这是好事,因为较低的输入阻抗可以负载测试设备 (DUT),但是会更改 DUT 内的实际电压电平 (这不是好事)。尽管净输入阻抗 10 MΩ 确实很大,但是您必须记住,必须要考虑到与探测设备的抗阻相关的这一负载阻抗量。例如,具有 100 MΩ 反馈电阻器的简单运算放大器电路可能会在示波器上提供一些错误的读数。如果您在电路实验中使用 Keysight 3000 X 系列示波器,则此示波器将自动检测并将探头衰减常数设置为 10:1。如果您使用 Keysight 2000 X 系列示波器,则必须手动输入探头衰减常数 (10:1)。示波器知道探头衰减常数后 (自动检测或手动输入),会提供所有垂直设置的补偿读数,以便将所有的电压测量引用到探头端部的无衰减输入信号。例如,如果您探测 10 Vpp 信号,则在示波器输入处收到的信号实际上仅为 1 Vpp。但是,由于示波器知道您使用的是 10:1 分压器探头,因此示波器在执行电压测量时将报告看到了 10 Vpp 的信号。到达实验 #5 (补偿您的 10:1 无源探头)时,我们将回过头研究此无源探头模型,并说明电容组件。探头/示波器电子模型中的这些元件将影响组合示波器和探测系统的动态/交流电性能。示波器前面板首先让我们了解示波器上最重要的控件/旋钮。在示波器顶部附近是“水平”控件,如图 4 所示。较大的旋钮用于设置水平刻度调整 (秒/格)。此控件可用于设置显示波形的 X 轴刻度调整。一个水平“格”为每个垂直网格线之间的 Δ-time。如果要查看更快的波形 (频率较高的信号),则将水平刻度调整设置为较小的 sec/div 值。如果要查看更慢的波形 (频率较慢的信号),则通常将水平刻度调整设为较高的 sec/div 设置。“水平”部分中较小的旋钮可用于设置波形的水平部分。换句话说,使用此控件可以左右移动波形的水平位置。示波器的水平控件(s/div 和位置)通常称为示波器的主要“时基”控件。值得注意的是,旋钮都是可以按下的。用来调整时基设置的旋钮按下是在精调与粗调之间切换。用来控制水平位移的旋钮按下可以迅速将波形的偏移归零。图4. 示波器水平 (X 轴)控件示波器底部附近垂直部分(在输入 BNC 的正上方)中的控件/旋钮(请参考图 5)可用于设置示波器的垂直刻度调整。如果使用双通道示波器,则有两对垂直刻度调整控件。如果使用四通道示波器,则有四对垂直刻度调整控件。垂直部分中每个输入通道的较大旋钮可用于设置垂直刻度调整系数 (伏/格)。这是波形的 Y 轴图形刻度调整。一个垂直“格”为每个水平网格线之间的 Δ-volts。如果要查看相对较大的信号 (高峰峰值电压),则通常将 Volts/div 设置设为相对高的值。如果查看小的输入信号电平,则应将 Volts/div 设置设为相对低的值。垂直部分中每个通道的较小控件/旋钮是位置/偏移控件。您可以使用此旋钮在屏幕上上下移动波形。垂直调整旋钮也是可以按下的。用来调整通道垂直分辨率的旋钮按下是在精调与粗调之间切换。用来控制垂直位移的旋钮按下可以迅速将波形的垂直偏移归零。图5. 示波器垂直 (Y 轴)控件另一个非常重要的示波器设置变量是触发电平控件/旋钮,如图 6 所示。此控制旋钮位于示波器前面板中心附近,标记为触发的部分下方。触发可能是示波器被了解得最少的方面,但该功能是示波器中您应了解的最重要功能之一。在进入实践实验时,我们将更为详细地介绍示波器触发。图6. 示波器触发电平控件阅读下面实验中的说明时,任何时候都会看到一个用方括号括住的粗体字,如 [ 帮助],这是位于指示波器右侧的一个前面板键 (或按钮)。按下该键时,具有与该特定前面板功能关联的“软键”选择的唯一菜单将被激活。“软键”是位于示波器显示屏下方的 6 个键/按钮。根据激活的菜单,这些键的功能会发生变化。现在找到图 7 中显示的 Entry 控制旋钮。这是示波器显示屏右侧位于黑色阴影区域中的旋钮。我们会非常频繁地使用此旋钮来更改一系列不具备专用前面板控件的设置变量和选择。选择软键时,任何时候您都会看到绿色的弯曲箭头 ,这指示 Entry 旋钮可用于控制此变量。请注意,此旋钮还用于设置波形亮度级别。让我们开始使用示波器进行测量!图7. 示波器通用 Entry 控件示波器基本实验 #1:对正弦波执行测量在第一个实验中,您将学习如何使用示波器的水平和垂直刻度调整控件来正确设置示波器,从而显示重复正弦波。此外,还将学习如何对此信号执行一些简单的电压和定时测量。1 将一个示波器探头连接到通道 1 输入 BNC 和标记为“Demo1”的输出端子之间,如图 8 所示。将此探头的接地夹连接到中心端子 (接地)。图8. 将通道 1 和通道 2 输入之间的探头连接到培训信号输出端子 2. 将第二个示波器探头连接到通道 2 输入 BNC 和标记为“Demo2”的输出端子之间,如图 8 所示。将此探头的接地夹连接到中心端子。3 按前面板右上部分附近的 [默认设置] 键。默认设置会将示波器置于工厂预设配置中。这不仅会将示波器的 X 和 Y 刻度调整系数设置为预设值,而且还会关闭某个学生可能使用的任意特殊操作模式。4 按 [帮助] 前面板键 (在通道 2 垂直控件旁边)。5 按示波器显示屏下方的培训信号软键。6 使用 Entry 旋钮选择正弦信号 (列表顶部),然后按输出软键将其打开。现在,Demo1 端子上应存在正弦波,但是还不能使用示波器的默认刻度调整系数来识别。我们现在将调整示波器的垂直和水平设置,以扩展此波形并将此波形位于显示屏的中心。7 顺时针旋转通道 1 V/div 旋钮,直到您看到显示的波形覆盖屏幕一半以上。正确的设置应为 500 mV/div,在显示屏左上角附近显示为“500mV/”。8 顺时针旋转 s/div 旋钮 (“水平”部分中的大旋钮),直到您观察到显示屏上出现正弦波的两个以上周期。正确的设置应为 50 ns/div,在显示屏顶部中间附近显示为“50.00ns/”。您的示波器的显示屏现在应与图 9 类似。至此我们完成了时基的基本设置。图9 用于查看正弦波培训信号的初始设置9 旋转“水平”位置旋钮,左右移动波形。10 按“水平”位置旋钮,将其设回到零 (在中心屏幕上显示为 0.0 秒)。11 旋转通道 1 垂直位置旋钮,上下移动波形。请注意,左侧的地指示器也会上下移动,并告知我们此波形上 0.0 伏 (接地电平)所在的位置。12 按通道 1 垂直位置旋钮将接地 (0.0 V) 设回中心屏幕。现在,让我们对此重复正弦波执行一些测量。请注意,示波器的显示屏基本上是 X - Y 图形。在我们的 X 轴(水平)上,我们可以测量时间,在我们的 Y 轴(垂直)上,我们可以测量电压。在许多电子工程或物理课程作业中,您可能计算过电子信号并在图纸上采用类似的格式画过图,只不过是静态的。或者,您或许使用过各种 PC 软件应用程序自动画过波形图。将重复输入信号应用于示波器时,我们可以观察到波形的动态 (持续更新)图。我们的 X 轴包含分布于屏幕上的 10 个主要格,每个主要格均等于 sec/div 设置。在这种情况下,每个水平主要格均表示 50 纳秒(假设示波器的时基设置为 50.0 ns/div,如前文所述)。由于屏幕中有 10 个格,因此示波器从显示屏的左侧到显示屏的右侧显示 500 ns(50.0 ns/div x 10 格)。请注意,每个主要格还被分为 4 个次要格,在中心水平轴上显示为勾选标记。每个次要格则表示 1/4 div × 50 ns/div = 12.5 ns。我们的 Y 轴包含 8 个主要格(垂直方向),每个主要格均等于 V/div 设置,应设置为 500 mV/div。在此设置下,示波器可以测量高为 4 Vp-p(500 mV/div x 8 格)的信号。每个主要格分为 5 个次要格。每个次要格 (在中心垂直轴上表示为勾选标记)则均表示 100 mV。13 通过将一个上升沿 (中心屏幕)的 0.0 V 电平到下一个上升沿的 0.0 V 电平的格 (主要和次要)数累加起来,然后乘以 s/div 设置 (应为 50.0 ns/div),估算其中一个正弦波的周期 (T)。T= _____________14 此正弦波的频率是多少 (F = 1/T)。F = _____________现在,让我们估算这些正弦波的峰峰值电压电平,但是首先,让我们对垂直设置进行几项较小调整,从而帮助我们更准确地执行此测量。15 调整通道 1 垂直位置旋钮 (亮起的“1”键下面较小的旋钮),直到正弦波的负峰与其中一个主要格线 (或网格线)相交。16 接下来,调整水平位置旋钮 (前面板顶部附近的较小旋钮),直到正弦波的一个正峰与具有次要格勾选标记的中心垂直轴相交。17 现在,通过将正弦波的负峰到正峰的格 (主要和次要)数累加起来,然后乘以 V/div 设置 (应为 1 V/div),估算此正弦波的峰峰值电压。Vp-p = _____________现在,让我们使用示波器的“光标”功能来执行上述相同的电压和定时测量,但不必累加格数,然后乘以刻度调整系数。首先,找到前面板“测量”部分中的“ 光标”旋钮,如图 10 所示。图 10 . 测量光标旋钮18 按光标旋钮;然后旋转此旋钮,直到“X1”突出显示;接着再次按此旋钮进行选择 (如果您不是在旋转选中“X1”光标后第二次按此旋钮,可能会出现超时现象,随后 X1 光标将自动被选中,且该菜单将关闭)。19 旋转光标旋钮,直到 X1 光标 (#1 定时标识)在特定电压电平下与正弦波的某一上升沿相交。提示:在波形的某一点对齐光标,波形在该点与某一水平网格线交叉。20 再次按光标旋钮;旋转此旋钮直到“X2”突出显示;然后再次按此旋钮进行选择。21 旋转光标旋钮,直到 X2 光标 (#2 定时标识)在相同电压电平下与正弦波的下一上升沿相交。22 再次按光标旋钮;旋转此旋钮直到“Y1”突出显示;然后再次按此旋钮进行选择。图 11. 使用示波器的光标测量23 旋转光标旋钮,直到 Y1 光标 (#1 电压标识)与正弦波的负峰相交。24 再次按光标旋钮;旋转此旋钮直到“Y2”突出显示;然后再次按此旋钮进行选择。25 旋转光标旋钮,直到 Y2 光标 (#2 电压标识)与正弦波的正峰相交。26 此信号的周期、频率和峰峰值电压 (光标读数在显示屏的右侧)是多少?ΔX = _____________ 1/ΔX = _____________ ΔY(1) = _____________用于测量示波器上的时间和电压的最常用方法是我们最初使用的“将格累加起来 ”方法。尽管必须将格累加起来,然后乘以示波器设置,但是熟悉其示波器的工程师可以快速估算信号的电压和定时参数,有时大致的估算是了解信号是否符合测试要求快速的手段。使用光标进行测量更准确一点,并能从测量中去除猜测因素。今天的大多数示波器还提供了一种自动执行许多参数测量的更准确且更快的方式。当我们开始对一些数字信号执行某些测量时,我们将回过头使用实验 #10 期间示波器的自动参数测量。但是现在,我们需要回过头来了解示波器的触发功能。示波器基本实验 #2:了解示波器触发的基本知识正如前面所说,示波器触发可能是示波器最重要的功能。如果要从示波器测量中获得最多收益,应了解此功能。尝试对今天许多更复杂的数字信号执行测量时,此功能特别重要。遗憾的是,示波器触发是示波器操作中被了解得最少的方面。可将示波器“触发”看作“同步图片获取”。当示波器捕获并显示重复输入信号时,每秒可获取输入信号的数万个图片。为了查看这些波形 (或图片),必须将图片获取与“某一刻”同步。“某一刻”是输入信号中的唯一时间点,或者在使用示波器的多个通道时,是基于输入信号的布尔组合的唯一时间点 (逻辑“码型 ”触发)。示波器触发的模拟情景是赛马比赛终点的照片。尽管不是重复事件,相机快门必须与头马鼻子通过终点线的那一刻同步。在赛马开始和结束之间的某一时间随机获取赛马图片,类似于查看示波器上未触发的波形。要更好地了解示波器触发,让我们对实验 #1 中使用的我们熟悉的正弦波执行更多测量。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 使用 Entry 旋钮选择“正弦”培训信号,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。6 将示波器的时基设置为 50.00 ns/div。7 按 [触发] 前面板键。您的示波器的显示屏现在与图 12 类似。如果使用示波器的默认触发条件,则此信号与 0.0 V 电平(触发电平设置)交叉时,示波器应在通道 1 探测并捕获的正弦波的上升(斜率选择)沿(触发类型选择)上触发。如果水平位置控件设置为 0.0 秒 (默认设置),则此时间点显示在中心屏幕上。在触发点之前捕获的波形数据 (显示屏左侧)被视为负时间数据,而在触发之后捕获的波形数据(显示屏右侧)被视为正时间数据。图12. 于 0.0 伏时在通道 1 的上升沿上触发示波器请注意,显示屏顶部附近“填充的”橙色三角形指示触发时间点 (0.0 s) 所在的位置。如果调整水平延迟/位置,此橙色三角形会从中心屏幕移走。中心屏幕上的“空心”橙色三角形 (仅在延迟/位置不是 0.0 s 时才可见)指示使用示波器的默认“中心”参考时延迟设置的时间位置。8 顺时针旋转触发电平旋钮,可增加触发电平电压设置。 9 逆时针旋转触发电平旋钮,可减小触发电平电压设置。增加触发电平电压设置时,应观察到正弦波在一定时间内会向左侧移动。如果减少触发电平电压设置,则正弦波会向右侧移动。最初旋转触发电平旋钮时,水平的橙色触发电平指示器将出现,实际触发电压设置始终显示在示波器显示屏的右上角。如果停止旋转触发电平旋钮,则橙色触发电平指示器将超时,且在几秒钟后会消失。但是,左侧的波形格线区域外侧仍会显示一个黄色的触发电平指示器,以指示触发电平相对于波形的设置位置。10 旋转触发电平旋钮,以将触发电平设置为恰好 500 mV(在中心屏幕上 1 格)。请注意,实际触发电平显示在显示屏的右上角。11 按斜率软键,然后选择下降沿触发条件。现在,正弦波应反转 180 度,波形的下降沿将与中心屏幕同步,如图 13 所示。图 13. 在 + 500 mV 下于正弦波的下降沿上触发12 增加触发电平电压设置,直到橙色电平指示器位于正弦波正峰上方 (大约 +1.5 V)。在正弦波上方设置触发电平时,示波器的采集和显示 (重复图片获取)不再与输入信号同步,因为示波器在此特定触发电平设置下找不到任何边沿交叉。您示波器的显示屏现在与图 14 类似。示波器现在处于“自动触发”模式下。图14. 在输入信号上方设置触发电平时自动触发自动触发是示波器的默认触发模式。当示波器使用自动触发模式时,如果示波器在一段时间 (时间会发生变化且取决于示波器的时基设置)后找不到有效的触发条件(在这种情况下正弦波的边沿交叉),则示波器将生成其各自的异步触发,并开始在随机时间获取输入信号图片 (采集)。由于“图片获取”现在是随机的,而不是与输入信号同步,因此我们看到的只是屏幕中波形的“模糊”画面。此波形的“模糊”画面会提示我们,示波器不会在输入信号上触发。13 按触发电平旋钮,以将触发电平自动设置为约 50%。14 从 Demo1 端子断开通道 1 探头连接。从信号源断开通道 1 探头连接后,现在应看到基线 0.0 V 直流信号。因为有了此 0.0 V 直流信号,我们不再具有边沿交叉,因而示波器不会触发;示波器再次“自动触发”是为了向我们显示此直流电平信号。除了默认的自动触发模式外,示波器还具有另一种用户可选择的触发模式,称为正常触发模式。现在,让我们看一下正常触发模式与自动触发模式有何不同。15 将通道 1 探头重新连接到 Demo1 端子。您应该会再次看到触发的正弦波。16 按 [模式/耦合] 前面板键 (在触发电平旋钮右侧)。17 旋转 Entry 旋钮将触发模式选择从自动更改为正常。此时,您应该看不出显示波形中有任何差异。18 再次从 Demo1 端子断开通道 1 探头连接。现在,您应看到探头断开连接之前发生的最后一次采集 (最后一张图片)。我们看不到自动触发模式显示的 0.0 V 直流电平轨迹。如果选择正常触发模式,则当且仅当 示波器检测到有效的触发条件 (在这种情况下为边沿交叉)时示波器仅会显示波形。19 顺时针旋转触发旋钮,以便将触发电平设置在 +1.50 V(在我们的正弦波上方)。20 将通道 1 探头重新连接到 Demo1 端子。正弦波现在已连接且正在输入到示波器,但是此信号的重复显示在哪里?由于我们使用的是正常触发模式,因此示波器仍然需要有效的边沿交叉,但是由于触发电平设置在波形上方 (@ +1.50 V),因此不存在有效的边沿交叉。正如我们使用正常触发模式看到的一样,对于波形的位置我们没有任何线索,我们无法测量直流电源。21 按触发电平旋钮,以将触发电平自动设置为约 50%。示波器应该开始再次显示重复波形。一些较早使用的示波器将我们今天称为正常的触发模式叫作“触发的”触发模式,实际上可能是此触发模式的更具体的说明性术语,因此在此模式下,示波器仅在发现有效的触发条件时才触发,不会生成自动触发 (异步触发,以生成异步图片获取)。稍显矛盾的是,正常触发模式不是“通常”使用的触发模式,它不是示波器的默认触发模式。通常使用的触发模式为自动触发模式,是示波器的默认触发模式。此时,您可能会好奇要何时使用正常触发模式。当触发事件不是频繁发生时 (包括单冲事件),应使用正常触发模式。例如,如果您将示波器设置为显示非常窄的脉冲,但是如果此脉冲只以 1 Hz 的频率出现 (每秒出现一次),并且如果示波器的触发模式被设置为自动触发模式,则示波器会生成许多异步生成的自动触发,而不能显示罕见的窄脉冲。在这种情况下,您需要选择正常触发模式,这样示波器将等到获取有效的触发事件后,才显示波形。稍后,我们将在今后实验期间连接到这类信号。但是现在,让我们了解有关在噪声信号上触发的更多信息。示波器基本实验#3:触发噪声信号重复正弦波大概是示波器触发的信号中最简单的一种类型。但是,在真实世界中,信号不是如此简单。在本实验中,我们将了解学习如何在嘈杂的环境 (真实世界情况)中触发信号,还将学习如何使用波形平均化消除数字化波形中的噪声。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 如果使用 Entry 旋钮,此时应选择“带噪声的正弦”信号,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。 6 将示波器的时基设置为 200.0 µs/div。即使示波器的默认设置条件将示波器配置为于 0.0 V 时在上升沿触发,示波器也会在此噪声正弦波的上升沿和下降沿触发,如图 15 所示。示波器实际上仅在上升沿触发。但是,当示波器在正弦波的下降沿触发时,实际上是在正弦波上随机噪声的上升沿触发。图15. 尝试在嘈杂的环境中触发信号7 通过将时基设置为 200.0 ns/div,验证示波器是否在噪声的上升沿触发。8 将示波器的时基设回到 200.0 µs/div。那么,我们如何在仅与正弦波 (无噪声)的上升沿重合的情况下使示波器触发?现在,让我们更多地了解一些示波器的用户可选择触发耦合选项。9 按 [模式/耦合] 前面板键 (触发电平旋钮旁边)。10 按高频抑制软键,以打开“高频抑制”滤波器。向示波器输入的信号实际上被拆分并沿着示波器内部的两条不同模拟路径向下发送。沿着其中一条路径向下的信号将被示波器的采集系统捕获 (图片获取系统)。类似的信号沿着一条单独的路径向下发送,由示波器的模拟触发电路处理。(请参考附录 A 中显示的示波器框图。)选择高频抑制后,由示波器的模拟触发电路处理的信号首先通过 50 kHz 低通滤波器。由于噪声由广泛连续的频率组成,包括高频率分量,因此触发电路随后会“看到”消除/衰减了大部分噪声的正弦波,而沿着采集路径向下发送的信号不受影响 (噪声被保留)。这样,我们就会看到噪声,如图 16 所示,但是示波器的触发电路看不到噪声。但是有一些限制。图16. 使用高频抑制触发噪声正弦波由于高频抑制滤波器基于固定的 50 kHz 低通硬件滤波器,因此不能在更高频率的信号上使用。这种 50 kHz 低通滤波器不影响我们的 1 kHz 正弦波培训信号。但是,如果我们尝试在 20 MHz 噪声正弦波上使用触发高频抑制,则 50 kHz 滤波器将“消灭”噪声和基本 20 MHz 正弦波,使其不可能触发任何信号。但是,我们还有两个选项。11 再次按高频抑制软键,将其关闭。示波器应再次在正弦波的上升沿和下降沿 触发。12 按噪声抑制软键,以打开“噪声抑制”滤波器。噪声抑制滤波器不是基于频率,而是基于幅度。尽管我们讨论了单触发电平,实际上信号必须交叉通过两个电平才能被鉴定为有效触发。这称为“触发滞后”,有时称为“触发灵敏度”。大多数示波器的默认触发灵敏度为 0.5 格。这意味着,输入信号必须摆动至少 0.5 格 (峰到峰)才能被鉴定为有效触发条件。但是,这也意味着,当噪声超过越 0.5 格 (峰到峰)时,示波器会触发噪声。选择噪声抑制时,示波器的滞后被扩展到约 1.0 格 (峰到峰)。对于这种特定的噪声正弦波,大多数时候,1.0 格的触发滞后可以解决我们遇到的问题。您可能会注意到示波器的显示屏上有一些“闪光”现象。这意味着,1.0 格的滞后相当不足。另一种解决方案是使用示波器的触发释抑功能,我们将在实验 #7 期间讨论。从带有噪声的此正弦波的测量离开之前,如果您想要查看此正弦波并对其执行测量,但却没有随机噪声,情况会怎样?13 按高频抑制软键。现在,高频抑制滤波以及噪声抑制滤波都应打开,为我们提供一种非常稳定的触发。14 按前面板波形区中的 [采集] 键 (就在光标旋钮下方)。15 旋转 Entry 旋钮将示波器的采集模式从正常更改为平均。选择平均采集模式时,示波器会对多个波形采集一起进行平均操作。如果信号中的噪声是随机的,则噪声分量会平均出来,因此我们随后可以仅对基本信号分量执行更准确的测量,如图 17 所示。图17. 使用示波器的平均采集模式消除噪声16 使用我们在实验 #1 中学到的测量技术确定以下各项:周期 = _____________频率 = _____________ Vp-p = _____________示波器基本实验 #4:记录和保存示波器测试结果完成各种电路实验作业后,您的教授可能需要您详细描写测试报告。可能需要包括实验报告中测量的图像 (图片)。此外,如果您不能在某个会话期间完成实验作业,则可能需要稍后继续测试。但是,如果您可以从中断的地方恢复,效果会好,您不必重新设置示波器,可能也不必重新采集波形。在本实验中,您将了解如何保存并调用各种示波器文件类型,包括图像、参考波形和设置。对于本实验,您必须有权访问个人 USB 存储设备。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 使用 Entry 旋钮选择“正弦”波形,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。6 将示波器的时基设置为 100 ns/div。此时,您应该会看到正弦波的五个周期,如图 18 所示。现在,让我们保存此图像 (图片)、保存波形,并保存设置。图18. 我们要保存以便归档及随后分析的正弦波的五个周期7 将您的个人 USB 存储设备插入示波器的前面板 USB 端口。8 按前面板文件区中的 [保存/调用] 键 (在光标旋钮下方)。9 按保存软键,然后按格式软键。10 使用 Entry 旋钮选择 PNG 24 位图像 (*.png)。11 按保存到(或按下选择)软键,然后使用 Entry 旋钮指向 \usb。12 按文件名软键,然后旋转 Entry 旋钮并为此文件提供名称。现在,我们将其称为“test”。13 旋转通用 Entry 旋钮时,字母数字字符串将弹出。只需拨号到第一个字母(在本例中为“t”),然后按 Enter 软键,或按 Entry 旋钮。14 对此文件名中其余的每个字符重复步骤 #13。15 按删除软键,从默认文件名中删除其余所有字符。16 按增量软键,以关闭自动增量 (框应为黑色)。请注意,如果自动增量已启用,则示波器将自动增加与文件名关联的数字。如果您打算保存多个图像,则这可能非常有用,您无需在每个保存操作之间手动重新输入不同的文件名。17 按下按下以保存软键。您的 USB 存储设备现在应具有与图 18 类似的示波器显示屏的存储图像。文件名应为“test.png”。您可以打开此文件或随后将其插入 Microsoft-Word 文档,以查看它是否真的在那里。现在,让我们来保存示波器的设置条件。18 按下 [保存/调用] 前面板键。19 按保存软键,然后按格式软键。20 使用 Entry 旋钮选择设置 (*.scp)。21 按保存到(或按下选择或位置)软键。22 使用 Entry 旋钮指向 \usb,然后按 Entry 旋钮。23 按文件名软键。您会看到以前输入的文件名将变为新的默认文件名。由于“设置”文件格式使用其他文件扩展名,因此可以使用相同的文件名。24 按下按下以保存软键。USB 存储设备现在应该具有名为“test.scp”的文件,其中包含示波器的当前设置配置。我们将在以后调用此设置配置。请注意,您还可以将设置保存到示波器内部的某个闪存寄存器。但是,接下来可能使用此示波器的某个学生会用他/她的设置覆盖此存储寄存器。因此,作为学生,使用共享示波器借助自己的个人存储设备保存示波器设置和波形始终是很好的方法。现在,让我们保存参考波形数据文件。25 按下 [保存/调用] 前面板键。26 按保存软键,然后按格式软键。27 使用 Entry 旋钮选择参考波形数据文件 (*.h5)。28 按保存到(或按下选择)软键。29 使用 Entry 旋钮指向 \usb,然后按 Entry 旋钮。30 按文件名软键。重申一下,我们不需要定义新的名称,因为此文件格式还具有唯一的文件扩展名 (test.h5)。31 按下按下以保存软键。请注意,我们在前面保存 .png 文件类型后,这仅是示波器显示的像素映射。此类文件不能回调到示波器中,而且无法对此类文件中存储的数据执行测量。此类文件以及 .bmp 文件类型主要对归档目的 (如纳入实验报告中)非常有用。但是,我们刚刚存储的“参考波形”数据文件 (.h5) 会将电压与时间数据作为 X-Y 对来保存。此类文件可以回调到示波器中,以便以后进行文件。您还可以将此类文件回调到许多 PC 应用程序中,以便进行更广泛的脱机分析。既然我们已保存了示波器的设置配置,而且还保存了波形 (正弦波的四个周期),让我们看一下是否可以调用这些文件。不过,首先我们会从默认设置开始,目的是破坏您在屏幕上看到的当前设置和波形。32 按下 [默认设置]。33 按下 [保存/调用]。34 按下调用软键,然后按下一个调用软键。35 使用 Entry 旋钮选择设置作为要调用的文件类型。36 按位置(或按下选择或调用自)软键,然后使用 Entry 旋钮指向“test”。 37 按按下以调用软键,或者按 Entry 旋钮。我们应该刚将示波器的设置恢复到其以前的配置。但是,示波器不会保存培训信号的状态。因此,此时我们看到的唯一波形应为基线 (0.0 V) 信号,因为探头的输入中没有出现信号。现在,让我们调用以前保存的波形。38 按调用软键,然后使用 Entry 旋钮选择参考波形数据 (*.h5)。39 按调用自(或按下选择或位置)软键,然后使用 Entry 旋钮指向“test”。 40 按按下以调用软键,或者按 Entry 旋钮。现在,您应该使用以前的设置配置查看我们已存储的正弦波版本 (以及活动 0.0 V 基线信号),如图 19 所示。此时,您可以更改设置 (如果您愿意),还可以继续对此存储的波形执行测量。请注意,保存/调用数据后,您可以随时删除您的 USB 存储设备。图19. 调用示波器的设置配置和波形示波器基本实验 #5:补偿 10:1 无源探头既然您已完成了此示波器培训指南中的前四个实验,应该在一定程度上熟悉了如何使用示波器进行基本电压和定时测量,让我们回过头来再次讨论探测。在本指南的入门部分中,我们简要讨论了探测,并显示了 10:1 无源探头和示波器的输入组合的电子输入模型。探头和示波器的此电子模型在此处再次显示在图 20 中。图20. 连接到示波器的 1 MΩ 输入阻抗的 10:1 无源探头的简化示意图如果您记住了,就说明系统已指导您忽略此电子模型中的电容组件,只考虑阻性组件。当前我们只观察阻性组件时,我们已确定探头的 9 MΩ 探头端部电阻以及示波器的 1 MΩ 输入阻抗建立了 10:1 分压器比率。对于低频或直流电应用,忽略电容元件是比较适宜的。但是,如果您需要测量动态信号 (示波器的主要测量应用),则不能忽略此电子模型的电容元件。所有示波器探头和示波器输入中本身都固有寄生电容。这些包括探头电缆电容 (C 电缆),以及示波器的输入电容 (C 示波器)。“固有/寄生”仅意味着电子模型的这些元件非有意设计,而是真实电子世界中原本就存在的。固有/寄生电容的数量随着示波器的不同和探头的不同而异。但是,如果没有其他的设计电容组件来补偿系统中固有的电容元件,则系统在动态信号条件 (非直流)下的阻抗会从探测系统的整体动态衰减改为不同于所需的 10:1 比率。沿着可调补偿电容 (C 组件)分布其他/设计的探针电容器 (C 探针)的目的是建立与 10:1 的阻性衰减匹配的电容阻抗衰减。正确调整补偿电容时,这还可以确保与 9 MΩ 电阻器并列的探针电容的时间常数,和与示波器的 1 MΩ 输入电阻器并列的固有和补偿电容的时间常数匹配。我们不会花很多时间讨论这一原理,只是连接到某个信号,并了解欠补偿、补偿过度和适当补偿的影响。但是,首先应注意我们会将通道 1 探头连接到前一个实验中的其他端子。1 将两个 示波器探头连接到标记了探头补偿的端子。请注意,这与称为 Demo2 的端子也是同一个端子。2 按下示波器前面板上的 [默认设置]。3 将通道 1 设置为 1.0 V/div。4 将通道 1 偏移/位置设置为 0.0 V(默认设置)。5 按触发电平旋钮,以将通道 1 上的触发电平设置为约 50%。6 按 [2] 前面板键以打开通道 2。7 将通道 2 设置为 1.0 V/div。8 将通道 2 偏移/位置设置为约 +3.5 V。9 将示波器的时基设置为 200.0 µs/div。如果正确补偿了探头,则应在示波器显示屏上看到两个带有平坦响应的 1 kHz 方波,与图 21 类似。现在,让我们调整每个探头上的探头补偿。图21. 使用示波器的 1 kHz 探头补偿信号补偿 10:1 无源探头10 使用小的“一字”螺丝刀,调整位于每个探头主体上的可变电容器。请注意,此调整有时位于一些探头的 BNC 连接端附近。图 22 显示了通道 1 探头(黄色波形)补偿过度的示例,以及通道 2 探头(绿色波形)欠补偿的示例。如果您没有观察到近乎完美的方波,则应重新调整探头上的探头补偿,直到示波器上的波形与图 21 类似。图22. 不当补偿的探头正确调整探头后,只要在此示波器上继续使用这些探头,在下次使用示波器时应该就不需要重新调整它们了。此时,您已完成了本实验的实践部分。如果您赶时间,并需要完成本章中最后一个实验,则应跳到实验 #6,然后读取本实验后面其余部分的内容。计算电容补偿的正确数量如果您面临挑战,请使用以下假设条件计算正确补偿所需的补偿电容 (C comp) 数量:对于计算所需的补偿电容 (C comp) 数量,最早的方法是使 R tip 和 C tip 并联的时间常数 (1/RC) 与 R scope 和 C parallel 并联的时间常数相等。请记住,C parallel 是探头/示波器模型中的三个电容元件的组合。另一种计算方法是使 C parallel 的电容阻抗的 9 倍与 C tip 电容阻抗的 1 倍相等。这将建立电容阻抗产生的衰减常数,与仅阻性网络 (10:1) 产生的衰减常数相同:探头负载除了适当补偿 10:1 无源探头以获得最为准确的示波器测量外,另一个必须要考虑的问题就是探头负载。换句话说,将探头和示波器连接到被测件 (DUT) 是否会改变电路的行为?将任何仪器连接到电路中后,仪器本身 (包括探头)都会成为 DUT 的一部分,并在某种程度上成为信号“负载”或改变信号的行为。如果使用上面列出的电阻和电容的给定值(以及已计算的 C comp 值),我们可以按照单个电阻器和电容器的并联方式将探头和示波器的负载影响通过建模方式合并在一起,如图 23 所示。图23. 10:1 无源探头和示波器负载模型对于低频或直流电应用,负载由 10 MΩ 电阻控制,在大多数情况下,这不应成为问题。但是,如果您探测的是 100 MHz 数字时钟信号,会怎么样?此数字时钟的第 5 个谐波 (用于创建此信号形状的重要分量)将为 500 MHz。现在,应计算由此负载模型的 13.5 pF 电容提供的阻抗,如图 23 所示:尽管 13.5 pF 看起来可能不多,但是频率越高,此负载电容数量就会很大。对于此类较高频的应用,大多数示波器供应商提供了可选的有源探头解决方案,它们具有更低的输入电容 (辅助 pF)。但是,这些类型的特殊探头成本比典型的 10:1 无源探头要高很多。最后,请注意本实验中显示的探头 + 示波器模型非常简单。较准确的模型还包括电感元件。电线 (特别是接地引线)应被视为电感元件,特别是对高频应用而言。示波器基本实验 #6:使用内置函数发生器生成波形除了示波器以外,您还将在各种电子工程和/或物理电路实验中使用大量测试设备,包括电源、数字万用表和函数发生器。函数发生器可以产生大量不同类型/形状的信号,这些将用作电路设计和实验的动态输入。Keysight 的 InfiniiVision 2000 和 3000 X 系列示波器具有内置的可选函数发生器,称为 WaveGen。若要完成这个简短的实验,前提条件是示波器上已正确安装此选件许可证。如果您不知道函数发生器功能是否已被许可并启用,请按 [Wave Gen] 前面板键。如果启用此选件,则波形发生器的菜单将出现。如果没有启用此选件,则您会看到屏幕上出现一条消息,指示此选件尚未得到许可。假设您的示波器具有 WaveGen 选件,让我们开始这一简短的实验,了解如何使用通用函数发生器。1 从示波器断开所有探头的连接。2 将 50 Ω BNC 同轴电缆连接到发生器的输出(电源开关旁边)与通道 1 输入BNC 之间。3 按下 [默认设置]。4 如果您使用的是 Keysight 2000 X 系列示波器,则需要将通道 1 的探头衰减常数设置为 1:1。按 [1] 前面板键,然后按探头软键。按新的探头软键,然后旋转 Entry 旋钮将衰减常数设置为 1.00:1。5 按 [WaveGen] 前面板键 (在通道 1 V/div 旋钮正上方)。6 按设置软键,然后按默认波形发生器软键。请注意,示波器的 [默认设置] 不会更改 WaveGen 的设置。因此,要确保从同一个起点开始,我们还需要发生器的默认设置。7 再次按 [WaveGen] 前面板键。8 将通道 1 的 V/div 设置设为 100 mV/div。9 将示波器的时基设置为 100.0 µs/div(默认设置)。您现在应该看到示波器上的正弦波的一个周期,与图 24 类似。峰峰值振幅为 500 mV 的 1.000 kHz 正弦波是 WaveGen 的默认信号。现在,让我们对信号进行一些更改。图24. 使用示波器的内置 WaveGen 函数发生器10 按频率软键,然后旋转 Entry 旋钮增加或减少频率。请注意,最大频率设置为 20.00 MHz。11 按振幅软键,然后旋转 Entry 旋钮以更改此信号的振幅。12 按偏移软键,然后旋转 Entry 旋钮以更改此信号的偏移。13 按波形软键,然后旋转 Entry 旋钮选择各种波形。请注意,选择方波后,您还可以微调占空比。选择脉冲后,您可以微调脉冲宽度。从此时开始,您可能不会将发生器的输出直接连接到示波器中了。您可能会将发生器的输出连接到电路的输入。随后,您将使用带有探头的示波器监视电路的输入和输出。就到这儿吧!了解使用示波器示波器进行实验测量的更多信息:编辑于 2022-08-04 09:28仪器仪表示波器示波器校准仪​赞同 401​​9 条评论​分享​喜欢​收藏​申请

R&S®MXO 4 示波器 | Rohde & Schwarz

R&S®MXO 4 示波器 | Rohde & Schwarz联系我们Location: CN - China

更改国家/地区联系我们Home产品测试与测量示波器R&S®MXO 4 示波器

R&S®MXO 4 示波器

新一代示波器,快速洞察与分析

R&S®MXO4 示波器,前视图

打开灯箱

R&S®MXO4 示波器,应用图像

打开灯箱

R&S®MXO4 示波器,应用图像

打开灯箱

Your browser does not support the video tag

R&S®MXO4 示波器

打开灯箱

Your browser does not support the video tag

R&S®MXO 4 示波器

打开灯箱 主要特点带宽:200 MHz 至 1.5 GHz在全球示波器中率先实现超过 450 万波形/秒的波形捕获率业内出众的系统架构:18 位垂直分辨率/12 位 ADC业内出色的标配存储:400 Mpoints45000 FFT/s 的频谱采集率,在业内名列前茅配置和报价

新一代技术

R&S®MXO 4 系列新一代示波器性能出色,性价比高。仪器实现跨代工程技术突破,可以提供快速的洞察与分析。

示波器的实时波形捕获率高达 450 万波形/秒,在全球首屈一指,支持工程师查看更多使用其他仪器无法查看的偶发事件。R&S®MXO 4 系列具备 12 位 ADC,分辨率是传统 8 位示波器的 16 倍,并支持所有采样率,不会降低性能,让测量更加准确。仪器的所有四个通道标配 400 Mpoint 采集存储,交织模式下可选 800 Mpoint 存储,是同类仪器的 100 倍。

R&S®MXO 4 系列示波器优于其他同类示波器,具备出色的 13.3" 全高清电容式触摸屏和直观的用户界面,可让用户在 15 分钟内即可掌握操作方法。

 产品手册 规格

显示所有下载

快速链接

可用的型号

可用选项

特性和优点

向左滑动 向右滑动

快速查找信号异常

... 提供优异的波形捕获率

 

> 450 万波形/秒

高达 90% 的实时信号采集

支持自动测量、FFT 或光标测量,提供快速性能

快速可靠地检测偶发信号故障

打开灯箱

一般波形捕获率(左)与 450 万波形/秒(右)

一般波形捕获率(左)与 450 万波形/秒(右)

准确查看信号

… 低测量噪声结合高垂直分辨率

 12 位 ADC 垂直分辨率,支持所有采样率,不会降低性能18 位架构,提供 HD 模式全带宽下垂直刻度低至 500 μV/div500 μV/div 时偏置范围可达 ±5 V,在业内首屈一指

打开灯箱

一般垂直分辨率(左)与 18 位分辨率 HD 模式(右)

一般垂直分辨率(左)与 18 位分辨率 HD 模式(右)

采集时间更长

… 出色的标配存储深度

 每路通道的存储深度高达 400 Mpoints标配分段存储,提供 10 000 个分段标配历史模式,支持 10 000 次采集

打开灯箱

长采集窗口中的低采样率(左)与高采样率(右)

长采集窗口中的低采样率(左)与高采样率(右)

隔离事件

… 高精度数字触发

 

业内出色的触发灵敏度:1/10 000 垂直分格

触发抖动仅为 1 ps

触发重置时间小于 21 ns

可调数字触发滤波器

用户可选迟滞

打开灯箱

数字触发和 HD 模式实现灵活触发

数字触发和 HD 模式实现灵活触发

出色的用户体验

… 优异的操控性

 

快速访问重要工具和菜单设置

R&S®SmartGrid 可用于通过拖放设置波形布局

增强触控灵敏度,便于更改重要的参数值

使用新搜索菜单更加快速地查找特性和功能

随时随地按需通过远程控制访问仪器

打开灯箱

15 分钟即可学会操作,具备出色的触控和直观的导航

15 分钟即可学会操作,具备出色的触控和直观的导航

强大的频谱分析

... 专用射频控制采集率高达 45000 FFTs/s,为测量提供深入的射频分析纯净的射频特性,提供优异的频谱性能专用射频控制,轻松进行设置和分析频谱和时域视图具有时间相关性,可独立控制提供自动测量,例如峰值表和最大/最小保持

打开灯箱

优异的射频测量功能

优异的射频测量功能可用型號向左滑动 向右滑动 可用型號型号带宽通道采样率最大存储深度MSO 选件裸机价格

R&S®MXO44-242

订单号码

1335.5050P02

带宽

200 MHz

通道

4

采样率

5 Gsample/s

最大存储深度

每通道的存储深度为 400 Mpts

MSO 选件

16 个数字通道

裸机价格

价格要求

获取报价

R&S®MXO44-243

订单号码

1335.5050P03

带宽

350 MHz

通道

4

采样率

5 Gsample/s

最大存储深度

每通道的存储深度为 400 Mpts

MSO 选件

16 个数字通道

裸机价格

价格要求

获取报价

R&S®MXO44-245

订单号码

1335.5050P05

带宽

500 MHz

通道

4

采样率

5 Gsample/s

最大存储深度

每通道的存储深度为 400 Mpts

MSO 选件

16 个数字通道

裸机价格

价格要求

获取报价

R&S®MXO44-2410

订单号码

1335.5050P10

带宽

1 GHz

通道

4

采样率

5 Gsample/s

最大存储深度

每通道的存储深度为 400 Mpts

MSO 选件

16 个数字通道

裸机价格

价格要求

获取报价

R&S®MXO44-2415

订单号码

1335.5050P15

带宽

1.5 GHz 

通道

4

采样率

5 Gsample/s

最大存储深度

每通道的存储深度为 400 Mpts

MSO 选件

16 个数字通道

裸机价格

价格要求

获取报价

规格

垂直系统模拟通道4数字通道(可选)16模拟带宽 (–3 dB)R&S®MXO 4(配备 R&S®MXO 4 -B24x 选件) 200 MHz、350 MHz、500 MHz、1 GHz、1.5 GHz上升时间R&S®MXO 4(配备 R&S®MXO 4 -B24x 选件)1.75 ns、1 ns、700 ps、350 ps、234 ps输入阻抗50 Ω ± 1.5%,

1 MΩ ± 1% || 12 pF(测量值)输入灵敏度50 Ω 时0.5 mV/div 至 1 V/div,

所有输入灵敏度支持整个模拟带宽1 MΩ 时0.5 mV/div 至 10 V/div,

所有输入灵敏度支持整个模拟带宽垂直分辨率最高 18 位,HD 模式(高分辨率)DC 增益精度偏置和位置设为 0 V,自校准后输入灵敏度 > 5 mV/div全量程的 ±1%输入灵敏度 ≤ 5 mV/div 至 ≥ 1 mV/div全量程的 ±1.5%输入灵敏度 < 1 mV/div全量程的 ±2.5%采集系统采样率模拟通道(实时)最大 5 Gsample/s(双通道),

最大 2.5 Gsample/s(四通道)模拟通道(插入)最大 5 Tsample/s数字通道每通道最大 5 Gsample/s采集存储标配400 Mpoints,4 路活动通道(单次),

400 Mpoints,2 路活动通道(运行)R&S®MXO4-B108 选件800 Mpoints,2 路活动通道(单次),

800 Mpoints,1 路活动通道(运行)最大波形捕获率> 4 500 000 波形/秒采集模式取样、峰值检测、平均、包络插值模式线性,sin(x)/x,采样和保持水平系统时基范围200 ps/div 至 10 000 s/div 间可选

 时基精度供货/校准之后,+23°C 条件下±0.2 ppm校准间隔期间±1 ppm通道间偏移模拟通道之间< 100 ps(测量值)数字通道之间< 500 ps(测量值)触发系统标配触发类型边沿、毛刺、宽度、欠幅、窗口、超时、间隔、斜率、建立/保持、码型、状态高级触发模式A/B/R、串行总线、触发输入和输出触发灵敏度0.0001 div,所有垂直刻度从 DC 至仪器带宽分析和测量自动测量39光标测量4波形数学运算最多 5 个叠加运算公式(加法、减法、乘法、除法、绝对值、

平方、平方根、积分、微分、

log10、loge、log2、倒数、逆运算、低通、

高通、重新缩放 (a*x+b))逻辑分析仪 (MSO) 功能数字输入通道16MSO 带宽400 MHzMSO 采样率每路通道 5 Gsamples/s通用数据尺寸宽 × 高 × 深414 mm × 279 mm × 162 mm

(16.3 in × 10.99 in × 6.38 in)重量无选件,标称值6.0 kg (13.23 lb)接口1 x USB 3.0 超高速端口

2 x USB 2.0 高速端口

2 x USB 3.1 gen1 端口

1 x USB 3.1 gen1,B 型插头

1 Gbps LAN

HDMI,用于外部显示器

外部触发,触发输出

参考输入,参考输出

VESA 支架显示屏类型13.3" LC TFT 彩色显示屏,带电容式触摸屏可用选项向左滑动 向右滑动 通用产品描述 R&S®MXO4-B1

订单号码

1335.4130.02

描述 混合信号选件,为 R&S®MXO 4 系列提供 16 路数字通道R&S®MXO4-B6

订单号码

1335.4147.02

描述 任意波形发生器,100 MHz,2 路模拟通道内存升级产品描述

R&S®MXO4-B108

订单号码

1335.5772.02

描述 内存升级至 800 Mpoints(双通道)带宽升级产品描述

R&S®MXO4-B243

订单号码

1335.4276.02

描述 R&S®MXO 4 系列示波器升级至 350 MHz 带宽

R&S®MXO4-B245

订单号码

1335.4299.02

描述 R&S®MXO 4 系列示波器升级至 500 MHz 带宽

R&S®MXO4-B2410

订单号码

1335.4318.02

描述 R&S®MXO 4 系列示波器升级至 1 GHz 带宽

R&S®MXO4-B2415

订单号码

1335.4330.02

描述 R&S®MXO 4 系列示波器升级至 1.5 GHz 带宽串行触发和解码产品描述 R&S®MXO4-K510

订单号码

1335.5195.02

描述 低速串行触发和解码 (I2C/SPI/UART/RS-232/RS-422/RS-485)

R&S®MXO4-K520

订单号码

1335.5550.02

描述 汽车电子串行触发和解码 (CAN/CAN-FD/CAN-XL/LIN)一般分析产品描述

R&S®MXO4-K31

订单号码

1335.5566.02

描述 电源分析R&S®MXO4-K36

订单号码

1335.5572.02

描述 频率响应分析通用产品描述

R&S®MXO4-Z1

订单号码

1335.4360.02

描述 前盖板:保护 R&S®MXO 4 示波器前端

 

R&S®MXO4-Z3

订单号码

1335.5589.02

描述 软包存放 R&S®MXO 4 示波器和附件

 

R&S®MXO4-Z4

订单号码

1335.5595.02

描述 运输箱保护 R&S®MXO 4 示波器和附件在运输过程中不受损坏

 

R&S®ZZA-MXO4

订单号码

1335.5108.02

描述 机架安装套件,适用于 R&S®MXO 4 示波器 (6 HU)应用包产品描述

R&S®MXO4-PK1

订单号码

1335.5237.02

描述 应用包,包括以下选件:

R&S®MXO4-K510、R&S®MXO4-K520、R&S®MXO4-K36、R&S®MXO4-B6无源探头产品描述 R&S®RT-ZP05S

订单号码

1333.2401.02

描述 无源探头,500 MHz,10:1R&S®RT-ZP1X

订单号码

1333.1370.02

描述 无源探头,38 MHz,1:1R&S®RT-ZP10

订单号码

1409.7550.00

描述 无源探头,500 MHz,10:1R&S®RT-ZP11

订单号码

1803.0005.02

描述 无源探头,700 MHz,10:1有源单端探头产品描述 R&S®RT-ZS10E

订单号码

1418.7007.02

描述 有源单端探头,1 GHz,罗德与施瓦茨探头接口R&S®RT-ZS10

订单号码

1410.4080.02

描述 有源单端探头,1 GHz,R&S®ProbeMeter,罗德与施瓦茨探头接口R&S®RT-ZS10L

订单号码

1333.0815.02

描述 有源单端探头,1 GHz,BNC 接口R&S®RT-ZS20

订单号码

1410.3502.02

描述 有源单端探头,1.5 GHz,R&S®ProbeMeter,罗德与施瓦茨探头接口有源差分探头产品描述 R&S®RT-ZD10

订单号码

1410.4715.02

描述 有源差分探头,1 GHz,罗德与施瓦茨探头接口R&S®RT-ZD20

订单号码

1410.4409.02

描述 有源差分探头,1.5 GHz,罗德与施瓦茨探头接口电源完整性探头产品描述 R&S®RT-ZPR20

订单号码

1800.5006.02

描述 电源完整性探头,2 GHz,R&S®ProbeMeter,罗德与施瓦茨探头接口2.0 GHz,1:1,50 kΩ,罗德与施瓦茨探头接口高压探头产品描述 R&S®RT-ZH03

订单号码

1333.0873.02

描述 250 MHz 无源高压探头R&S®RT-ZH11

订单号码

1409.7737.02

描述 400 MHz 无源高压探头R&S®RT-ZH10

订单号码

1409.7720.02

描述 400 MHz 无源高压探头R&S®RT-ZHD07

订单号码

1800.2307.02

描述 200 MHz 高压差分探头R&S®RT-ZHD15

订单号码

1800.2107.02

描述 100 MHz 高压差分探头R&S®RT-ZHD16

订单号码

1800.2207.02

描述 200 MHz 高压差分探头R&S®RT-ZHD60

订单号码

1800.2007.02

描述 100 MHz 高压差分探头电流探头产品描述 R&S®RT-ZC02

订单号码

1333.0850.02

描述 AC/DC 20 kHz 电流探头R&S®RT-ZC05B

订单号码

1409.8204.02

描述 2 MHZ 电流探头R&S®RT-ZC10

订单号码

1409.7750K02

描述 10 MHZ 电流探头R&S®RT-ZC15B

订单号码

1409.8227.02

描述 50 MHz 电流探头R&S®RT-ZC10B

订单号码

1409.8210.02

描述 10 MHz 电流探头R&S®RT-ZC20

订单号码

1409.7766K02

描述 100 MHZ 电流探头R&S®RT-ZC20B

订单号码

1409.8233.02

描述 100 MHZ 电流探头R&S®RT-ZC30

订单号码

1409.7772K02

描述 120 MHz 电流探头R&S®RT-ZC31

订单号码

1801.4932.02

描述 120 MHz 电流探头R&S®RT-ZC03

订单号码

1333.0844.02

描述 100 kHz 电流探头逻辑探头产品描述

R&S®RT-ZL04

订单号码

1333.0721.02

描述 400 MHz 逻辑探头EMC 近场探头产品描述 R&S®HZ-15

订单号码

1147.2736.02

描述 电场和磁场近场探头组探头附件产品描述 R&S®RT-ZA13

订单号码

1409.7789.02

描述 探头电源适用于 R&S®RT-ZC10/20/30 探头的电源,+/-12 V DC,+/-2.5 AR&S®RT-ZA15

订单号码

1410.4744.02

描述 外部衰减器10:1,2.0 GHz,1.3 pF,60 V DC,42 V AC(峰值),适用于 R&S®RT-ZD20/30 探头。包含在 R&S®RT-ZD10 中。R&S®RT-ZAP

订单号码

1326.3641.02

描述 3D 探头定位器3D 定位器配备中心张紧调节旋钮,可轻松夹住并固定探头(跨度范围:200 mm;固定范围:15 mm)R&S®RT-ZF20

订单号码

1800.0004.02

描述 电源去偏移夹具适用于电源测量中电压和电流探头的去偏移夹具;包括 USB 2.0 电源电缆

相关下载

手册及数据表操作手册应用驱动程序固件常见问题文档及文章

相关视频

01:07

Your browser does not support the video tag

任意波形发生器R&S®MXO 4 系列示波器提供全集成式双通道 100 MHz 任意波形发生器,并支持多种波形和调制类型。

9月 27, 2022

01:00

Your browser does not support the video tag

数字逻辑通道所有 R&S®MXO 4 系列示波器标配必备硬件,用户只需使用逻辑探头,即可启用 16 个数字通道。

9月 27, 2022

01:15

Your browser does not support the video tag

独立的频谱分析设置只需输入中心频率、频率范围或分辨率带宽 (RBW) 等典型参数,即可配置 R&S®MXO 4 系列示波器的频谱分析功能。频谱设置和时域设置无关,但具有时间相关性。

9月 27, 2022

01:08

Your browser does not support the video tag

深存储示波器的采集存储深度越大,采集时间就越长,并维持出色的采样率和带宽。R&S®MXO 4 系列示波器的所有四个通道同时标配 400 Mpoints 采集存储,能够采集更长的时间间隔和放大细节,并且不会出现混叠。

9月 27, 2022

01:50

Your browser does not support the video tag

快捷的数学测量R&S®MXO 4 系列示波器提供 5 个数学通道和 15 余种功能,能够深度分析实时波形或采集的波形

9月 27, 2022

00:48

Your browser does not support the video tag

轻松进行远程使用使用电脑或移动设备远程控制 R&S®MXO 4 系列示波器并查看显示。用户可以远程看到示波器中的实际用户界面。

9月 27, 2022

00:52

Your browser does not support the video tag

静音操作R&S®MXO 4 系列示波器的可听噪声非常低,易于使用。

9月 27, 2022

02:20

Your browser does not support the video tag

电源完整性测量 R&S®MXO 4 系列示波器能够更加高效地调试和验证电源路径。仪器提供多种优势,例如出色的直流偏置控制以测量小电压,以及通过快速频谱查找耦合的干扰源等。

9月 27, 2022查看更多/

您准备好迎接新挑战了吗?快来加入罗德与施瓦茨的专家团队!

罗德与施瓦茨推出 MXO4,未来将持续开发新一代产品,不断应对各种挑战。查看我们的招聘职位,一起将想法变成现实显示所有 631 个职位招聘

相关产品

R&S®RTA4000R&S®RTE1000R&S®RTO6请求信息如果您有任何疑问或需要了解更多信息,请填写此表格,我们会尽快回复您。先生女士无可奉告名字姓氏电子邮箱公司国家/地区Please select...AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic Of TheCosta RicaCroatiaCubaCyprusCzech RepublicCôte D'IvoireDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHoly See (Vatican City State)HondurasHongkongHungaryIcelandIndiaIndonesiaIran, Islamic Republic OfIraqIrelandIsle Of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Republic OfKuwaitKyrgyzstanLao People's Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic OfMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Federated States OfMoldova, Republic OfMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Mariana IslandsNorwayOmanPakistanPalauPalestinian Territory, OccupiedPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarRomaniaRwandaRéunionSaint HelenaSaint Kitts and NevisSaint LuciaSaint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic OfThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUnited States Minor Outlying IslandsUruguayUzbekistanVanuatuVenezuelaViet NamVirgin Islands, BritishVirgin Islands, U.S.Wallis and FutunaWestern SaharaYemenZambiaZimbabweÅland Islands电话(例如,+1 400 123 5678)邮政编码城市询问请选择产品信息请求服务/支持请求Email confirmation (optional)推广许可我同意通过电子邮件或邮政信件接收罗德与施瓦茨公司和本网站版权标记指明的罗德与施瓦茨实体或子公司提供的营销或广告信息(例如特价优惠和折扣促销信息)。有关个人数据使用和撤销程序的详情,请参阅隐私声明和推广许可。获取信息

你的申请已提交,我们稍后会联系您。

An error is occurred, please try it again later. 大体信息,法律信息 Manufacturer's recommended retail price (MSRP). The price shown does not include VAT. Prices and offers are only intended for entrepreneurs and not for private end consumers.You may use the electronic signature via DocuSign to submit your information to enroll with the Rohde & Schwarz Customer Delegated Administration program. DocuSign processes the information provided according to their . The minimum system requirements for using the DocuSign system may change over time. The current system requirements are found Terms & Conditions of the Prize Draw 10 years Rohde & Schwarz oscilloscopes1. The prize draw “10 years Rohde & Schwarz oscilloscopes” (herein referred to as “Draw”) is organized by Rohde & Schwarz GmbH & Co. KG, Mühldorfstraße 15, 81671 Munich, Germany, Tel. +49 89 41 29 0 (herein referred to as “R&S).2. All participators can register to the draw during January 01, 2020 to December 31, 2020 with their name, company name and business e-mail.3. Participation is free of charge and not dependent on the purchase of goods or services.4. The draw is only open to legal entities and only the legal entities are able to win the prizes. An individual person is not allowed to participate on its own name and its own account but as a representative of a legal entity filing the participation form in the name of and on behalf of the legal entity.5. The prizes to win are 1 of 10 R&S®RTB2000 within the time frame January 1, 2020 to December 31, 2020:Prize: 1x R&S®RTB2000 Digital Oscilloscope6. The draw takes place at Rohde & Schwarz headquarters, Muehldorstrasse 15, 81671 Munich. The winner of the prizes will be informed by e-mail within 5 (5) working days.7. The authorized representative of the legal entity shall inform Rohde & Schwarz about the acceptance of the price. In case of the denial of the acceptance, or no answer within two (2) weeks, a new winner will be drawn. If no winner can be determined within four (4) weeks, the draw ends and the prize forfeit.8. R&S’ employees and members of their families and also person being familiar with the process of the draw and members of their families are excluded from filling the participation form.9. No cash equivalent or exchange of prizes is allowed. Prizes are non-transferable. All taxes, levies, duties, fees and other charges levied in the participant´s country shall be borne by the participant.10. Personal data will be processed only for the purpose of this prize draw and deleted four (4) weeks after the draw, if not agreed otherwise.11. Any Participant who does not comply with these Terms & Conditions may be disqualified by R&S from this Competition. In such cases, prizes can also be withdrawn retrospectively. In case a prize is withdrawn retrospectively due to the non-compliance with these Terms & Conditions, it shall be returned by the respective participant at his cost to R&S’ address mentioned under Nr.1 and a new winner will be drawn.12. The participants cannot claim the prizes of this draw and no legal recourse is permitted in this respect.13. The draw and any contractual relationship arising therefrom between R&S and the respective participant shall be governed by and construed in accordance with the laws of Germany, without any recourse to the conflict of laws. The courts of Munich, Germany, shall have exclusive jurisdiction in case of any disputes arising directly or indirectly from the participation in this Competition.* “fast delivery” inside 7 working days applies to the Rohde & Schwarz in-house procedures from order processing through to available ex-factory to ship. YouTube RSS Feeds Linkedin WeChat

罗德与施瓦茨(中国)科技有限公司 中国区总部

罗德与施瓦茨提供各种先进解决方案,为打造一个更加安全的互联世界保驾护航。作为一家独立的技术集团,罗德与施瓦茨 90 多年来一直坚守创新,践行长期性和可持续性发展理念,是全球企业和政府机构的可靠合作伙伴。

地址罗德与施瓦茨(中国)科技有限公司 中国区总部北京市朝阳区紫月路18号院1号楼(朝来高科技产业园)100012联系我们电话:86 10 6431 2828 传真:86 10 6437 9888热线:400 650 5896info.china@rohde-schwarz.com

© 2024 Rohde & Schwarz

Cookie Information

京ICP备15006829号-1

京公网安备 11010502035983 号

版本说明

隐私声明 / 数据保护

条款与条件

招贤纳士

使用条款

示波器的使用方法及教程 | Tektronix

示波器的使用方法及教程 | Tektronix

切换搜索

Current Language

×

Chinese (Simplified, PRC)

选择语言:

English

FRANÇAIS

Việt Nam

简体中文

日本語

한국어

繁體中文

切换菜单

x

To find technical documents by model, try our Product Support Center

Show all results →

产品

示波器和探头

示波器

高速数字化仪

探头和附件

分析仪

频谱分析仪

参数分析仪

相干光信号分析仪

频率计数器

Keithley 产品

信号发生器

任意波函数发生器

任意波形发生器

源和电源

电源

DC 电子负载

源测量单元

电化学产品

仪表

数字万用表

低电平仪器/灵敏专用仪器

其他产品

TMT4 PCIe性能综合测试仪

参考解决方案

开关和数据采集系统

半导体测试系统

元件和附件

软件

翻新测试设备

查看所有产品

促销

解决方案

主要趋势

高级研究

航空航天和国防

汽车

教育和教学实验室

医疗

功率半导体

半导体设计和制造

应用

3D 传感与成像检定

EMI/EMC 测试

高速串行通信

材料科学

电源能效管理

Test Automation

无线和射频

校准和服务

校准服务

申请维修服务

Multi-Brand Service Request

Factory Verified Calibration

Multi-Brand Compliant Calibration

质量和认证

校准能力

位置

服务级别

Factory Calibration Status Tracking

资产管理服务

CalWeb

托管服务

查看所有服务

维修服务

申请维修服务

查看保修状态

跟踪维修状态

部件

厂家服务计划

协议续订

产品全面呵护

金牌保障计划

泰克标准保障计划

吉时利保障维修计划

原厂校准计划

测试服务 (US Only)

包装测试

泰克器件解决方案

晶片测试

封装组装和测试

2.5 D / 3 D 封装

设计和仿真

支持

Owner Resources

按型号查找软件、手册、常见问题解答

查看保修状态

订单状态

部件

TEKAMS(软件许可证管理)

用户论坛

常见问题

联系技术支持

学习中心

支持中心

资源

产品注册

合作伙伴

质量保证

安全召回

产品安全通知

产品回收(仅限欧洲)

出口代码

诚信和遵守程序

新闻编辑室

事件

博客

案例

溯源能力

购买 | 报价

联系销售人员进行产品演示和咨询

销售联系

索取报价请求服务报价/信息

电话

促销

Partner Locator

GSA 计划

购买方式与渠道

联系我们

切换搜索

x

To find technical documents by model, try our Product Support Center

Show all results →

Current Language

×

Chinese (Simplified, PRC)

选择语言:

English

FRANÇAIS

Việt Nam

简体中文

日本語

한국어

繁體中文

学习中心

下载

下载手册、产品技术资料、软件等:

下载类型

全部显示

Products

Datasheet

Manual

Software

Marketing Document

Faq

Video

型号或关键字

服务支持

学习中心

示波器

示波器

数字万用表

电源

半导体测试系统

信号发生器

软件

源测量单元

频谱和网络分析仪

开关和数据采集系统

Calibration Services

示波器

Chinese (Simplified, China) : 中文(中国)

English : English

German (Germany) : Deutsch (Deutschland)

Russian (Russia) : русский (Россия)

French (France) : français (France)

Chinese (Traditional, Taiwan) : 中文(台灣)

Japanese (Japan) : 日本語 (日本)

Korean (Korea) : 한국어(대한민국)

Vietnamese (Vietnam) : Tiếng Việt (Việt Nam)

Select Application (optional)

Automotive

Education and Teaching Labs

EMI/EMC Testing

High Speed Serial Communications

Material Science and Engineering

Power Efficiency

Semiconductor Design And Manufacturing

Wired Communications

Wireless and RF Testing

最近使用

基础

应用指南

解决方案简介

视频

案例研究

在线研讨会

应用指南

低噪声纹波探头测量入门

8/12/2019

解决方案简介

新一代示波器 - 3/4/5/6系列

6/27/2022

视频

2021全国大学生电子设计竞赛——常用测试仪器的使用要领视频教学

12/8/2021

视频共涉及到以下六大类测试方法:

电源类题⽬的测试指标及测试⽅法

放⼤器/模拟类题⽬的测试指标及测试⽅法

⾼频类题⽬的测试指标及测试⽅法

控制类题⽬的调试⽅法

仪器仪表类的测试指标及测试⽅法

数据采集与处理类的测试指标及测试⽅法

在线研讨会

车载以太网的测试解决方案

8/18/2021

全景演示与介绍车载以太网的测试解决方案:

车载以太网的应用场景和行业前瞻

车载以太网和传统以太网的继承性和差异性

车载以太网Compliance一致性分析方案

上行/下行数据分离、PAM3 信号质量分析和车载以太网的协议解码方案

案例研究

教育客户

8/17/2021

哥伦比亚大学电气工程学院设立电机驱动与电力电子实验室,目的是开发能够带来更高的技术,以更低的成本获得更高的性能和效率。泰克5系列混合信号示波器,满足了他们正在寻找的所有功能。8个模拟通道允许多相系统分析。结合5系列与高带宽电流和电压探头实现了高频率的电流和电压测量。

负载更多

关于泰克

我们提供专业的测量洞见信息,旨在帮助您提高绩效以及将各种可能性转化为现实。泰克设计和制造能够帮助您测试和测量各种解决方案,从而突破复杂性的层层壁垒,加快您的全局创新步伐。

更多详情

公司

关于我们

人才招聘

Newsroom

泰克线下活动

供应商多元化

泰克云上大讲堂

EA Elektro-Automatik

帮助与学习

联系我们

联系技术支持

所有者资源

学习中心

博客

合作伙伴

查找合作伙伴

联系我们

其他链接

© 2023 TEKTRONIX, INC.

网站地图

隐私权

使用条款

Terms and Conditions

致电我们

信息产业部备案许可证号:沪ICP备17023707号

反馈

Infiniium UXR 系列示波器-是德科技 Keysight

Infiniium UXR 系列示波器-是德科技 Keysight

这是您想要的页面.

查看搜索结果:

Choose a country or area to see content specific to your location

启用浏览器 cookies,以便改善站点的功能和性能。

Enable Javascript and browser cookies for improved site capabilities and performance.

Toggle Menu

在线咨询

联系是德科技

欢迎

我的个人信息

退出

登录

注册

确认您的国家或地区

中国

中国

日本

繁體中文

한국

Brasil

Canada

Deutschland

France

India

Malaysia

United Kingdom

United States

Australia

Austria

Belgium

Denmark

Finland

Hong Kong, China

Ireland

Israel

Italy

Mexico

Netherlands

Singapore

Spain

Sweden

Switzerland (German)

Thailand

Vietnam

更多…

请确认

确认您所在的国家/地区,以便获取相应的价格、促销、活动和联系信息等。

Select locale

确认

产品与服务

示波器

InfiniiVision数字式存储示波器

实时示波器――合规性测试

等效时间采样示波器

便携式示波器-手持、模块化和USB示波器

示波器软件

示波器探头

全部示波器  

分析仪

频谱分析仪(信号分析仪)

网络分析仪

逻辑分析仪

协议分析仪和训练器

误码率测试仪

噪声系数分析仪和噪声源

高速数字化仪和多通道数据采集解决方案

交流电源分析仪

直流电源分析仪

材料测试设备

器件电流波形分析仪

参数/器件分析仪和曲线追踪器

仪表

数字万用表DMM

相位噪声测量

功率计 + 功率传感器

53200 系列射频和通用频率计数器/计时器

LCR 表和阻抗测量产品

飞安计、皮安计和静电计

发生器,源和电源

信号发生器(信号源)

波形和函数发生器

任意波形发生器

脉冲发生器产品

HEV / EV / 电网仿真器和测试系统

直流电源

源表模块

直流电子负载

交流电源

软件

EDA 软件

仪器测量软件

仪器工作流程软件

软件测试

所有设计及测试软件  

无线

信道仿真解决方案

物联网合规性测试解决方案

无线路测

无线接入和核心网测试

无线分析仪

无线信道仿真仪

5G NR 基站测试

空中接口测试

模块化仪器

PXI 产品

AXIe 产品

数据采集系统DAQ

USB 产品

VXI 产品

参考解决方案

所有模块化产品  

网络测试与安全

应用和威胁情报

云测试

网络培训仿真器

网络测试硬件

综合流量发生器

协议和负载测试

网络安全测试工具

网络建模

全部网络安全和测试  

网络可视性

旁路交换机

时钟同步

云可视性

Network and Application Monitoring

网络流量汇聚设备(NPB)

网络分流器-是德科技 Keysight

所有网络可视化产品  

服务

KeysightCare

校准服务

维修服务

技术更新服务

测试即服务(TaaS)

网络/安全服务

咨询服务

Financial Services

Education Services

Keysight Support Portal

Used Equipment

所有服务  

其他产品

在线ICT测试系统-ICT测试仪器

面向特定应用的测试系统和组件

参数测试解决方案

光通信测试与测量产品

激光干涉仪和校准系统

单片激光合路器与精密光学产品

毫米波和微波器件

所有产品、软件和服务

 

了解

资源

使用场景

行业

活动

博客

产品专区

行业

Inside Keysight

关于 Keysight

购买

支持

是德科技产品支持

软件下载中心

欢迎

|

Exit Procurement Session

View and Transfer Cart

Discard Cart and End Procurement Session

您希望搜索哪方面的内容?

搜索

MXG Signal Generator

ENA-X Network Analyzer

UXM for Wi-Fi 7

Artificial Intelligence

寻找解决方案

需要技术支持

参加课程

查找活动

原厂翻新仪器

KeysightCare

在线购买

建议的搜索

No product matches found - System Exception

符合的结果

查看所有搜索结果

是德科技主页

产品与服务 - 电子测试仪器

示波器

实时示波器――合规性测试

Infiniium UXR 系列示波器

Infiniium UXR 系列示波器

突破极限,完成更棘手任务。

购买/报价

您是否已经拥有此产品? 查看技术支持

您已经拥有了示波器?

参加旧机置换活动,用您现有的示波器或其他厂商的示波器换购新款 UXR 示波器,可节省高达 40% 的费用。

查看旧机置换活动

是德科技是享誉业界的示波器制造商

(资料来源:Frost & Sullivan 市场研究报告 2020 年 10 月)

查看示波器

特点

特点

技术指标

技术指标

型号

型号

选件、软件、附件

选件、软件、附件

资源

资源

特点

更先进的示波器

开发下一代技术要求测试设备必须具有出色的信号完整性。 更宽带宽、更高 ENOB 和更低本底噪声,赋予您对自身设计更深刻的洞察力。 是德科技的突破性技术能够帮助您应对更困难的测量和设计挑战。

5 至 110 GHz 带宽、更全面的探测、分析应用软件以及测量,众多优势集于一身,能够测试各种先进技术

在各种带宽下都能提供准确的测量结果――更低噪声、更高 ENOB 和 10 位垂直分辨率,让您能够深入洞察信号的真实特性

通过硬件加速的测量和分析,可以更快解决问题

其宽带毫米波测量的 EVM 性能与其他先进信号分析仪相比也毫不逊色

这个多功能平台能够执行时域、频域和相位噪声测量,并可全方位升级,因此您无需考虑购买其他示波器,从而充分保护您的投资

支持定制化是我们仪器的一大优势

除了基础测量以外,测量瞬时带宽、无杂散动态范围和信号保真度也是推动技术进步的关键。 是德科技为其所有的高性能产品配备了坚强后盾――包括自主设计的定制集成电路、专有的磷化铟(InP)和砷化镓(GaAs)设计以及定制的 ASIC 信号处理方案,确保这些产品能够提供更快速、更可靠的测量。 您可以放心选择是德科技产品,加速实现下一次创新。 是德科技先进的半导体技术使 Infiniium UXR 系列无论是速度还是噪声性能都比其他示波器更胜一筹。

To view this video please enable JavaScript, and consider upgrading to a web browser that

supports HTML5 video

轻松收集和分析数据

UXR 系列提供了一套功能强大的软件,可以执行信号完整性分析、电源完整性分析、协议解码和触发以及合规性测试等任务。

以下是 UXR 系列的部分应用软件:

更多……

体验 Infiniium 示波器软件导览

利用恰当的功能,克服更棘手的测量挑战

出色的信号完整性和先进的技术指标让您对测量充满信心。

在整个带宽中能够以最高有效位数(ENOB)进行测量。

示波器的带宽和通道特性可以全方位升级,满足您不断变化的设计要求。

本底噪声更低,测试更准确:110 GHz 时的垂直噪声不到 1 mVrms。

抖动更小,可以确保测量准确度:固有抖动 < 25 fs(rms),通道间抖动 < 10 fs(rms)。

自校准模块有效确保测量精度。

主要技术指标

带宽

5 至 110 GHz

ADC 位数

10 位

通道数

1 个、2 个或 4 个

最大存储器深度

2 G 点

GSa/s

128 或 256

最大 DDC 带宽

2.16 GHz

想要了解更多技术指标?

查看技术资料

查找适合您的型号

上一页

UXR0051AP

UXR0051AP 是一款 Infiniium UXR 系列实时示波器,拥有 5 GHz 带宽、1 个通道和 1 mm 连接器输入 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

5 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

129 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0104A

UXR0104A 是一款 Infiniium UXR 系列实时示波器,拥有 10 GHz 带宽和 4 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

10 GHz

最大采样率:

128 Gsa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

n/a

带宽升级:

up to 33 GHz via FW

up to 110 GHz via HW

本底噪声:

129 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0134A

UXR0134A 是 Infiniium UXR 系列实时示波器之一,拥有 13 GHz 带宽和 4 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

13 GHz

最大采样率:

128 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

33.8ps(10-90%), 23.9ps(20-80%)

带宽升级:

up to 33 GHz via FW

up to 110 GHz via HW

本底噪声:

150 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0164A

UXR0164A 是一款 Infiniium UXR 系列实时示波器,拥有 16 GHz 带宽和 4 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

16 GHz

最大采样率:

128 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

27.5ps(10-90%), 19.4ps(20-80%)

带宽升级:

up to 33 GHz via FW

up to 110 GHz via HW

本底噪声:

165 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0204A

UXR0204A 是一款 Infiniium UXR 系列实时示波器,拥有 20 GHz 带宽和 4 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

20 GHz

最大采样率:

128 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

22.0ps(10-90%), 15.6ps(20-80%)

带宽升级:

up to 33 GHz via FW

up to 110 GHz via HW

本底噪声:

188 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0254A

UXR0254A 是一款 Infiniium UXR 系列实时示波器,拥有 25 GHz 带宽和 4 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

25 GHz

最大采样率:

128 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

17.6ps(10-90%), 12.4ps(20-80%)

带宽升级:

up to 33 GHz via FW

up to 110 GHz via HW

本底噪声:

212 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0334A

UXR0334A 是一款 Infiniium UXR 系列实时示波器,拥有 33 GHz 带宽和 4 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

33 GHz

最大采样率:

128 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

13.3ps(10-90%), 9.4ps(20-80%)

带宽升级:

Up to 110 GHz via HW

本底噪声:

266 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0252AP

UXR0252AP 是一款 Infiniium UXR 系列实时示波器,拥有 25 GHz 带宽、2 个通道和 1 mm 连接器输入 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

25 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

290 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0254AP

UXR0254AP 是一款 Infiniium UXR 系列实时示波器,拥有 25 GHz 带宽、4 个通道和 1 mm 连接器输入。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

25 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

290 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0404AP

UXR0404AP 是一款 Infiniium UXR 系列实时示波器,拥有 40 GHz 带宽、4 个通道和 1 mm 连接器输入。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

40 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

340 µV(rms)

有效位数(ENOB):

As high as 9.0

Quick View

UXR0402AP

UXR0402AP 是一款 Infiniium UXR 系列实时示波器,拥有 40 GHz 带宽、2 个通道和 1 mm 连接器输入。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

40 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

340 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0402A

UXR0402A 是一款 Infiniium UXR 系列实时示波器,拥有 40 GHz 带宽和 2 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

40 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

11.0ps(10-90%), 7.8ps(20-80%)

带宽升级:

up to 70 GHz via FW

up to 110 GHz via HW

本底噪声:

340 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0404A

UXR0404A 是一款 Infiniium UXR 系列实时示波器,拥有 40 GHz 带宽和 4 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

40 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

11.0ps(10-90%), 7.8ps(20-80%)

带宽升级:

up to 70 GHz via FW

up to 110 GHz via HW

本底噪声:

340 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0502A

UXR0502A 是一款 Infiniium UXR 系列实时示波器,拥有 50 GHz 带宽和 2 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

50 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

8.8ps(10-90%), 6.2ps(20-80%)

带宽升级:

up to 70 GHz via FW

up to 110 GHz via HW

本底噪声:

410 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0504A

UXR0504A 是一款 Infiniium UXR 系列实时示波器,拥有 50 GHz 带宽和 4 个通道 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

50 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

8.8ps(10-90%), 6.2ps(20-80%)

带宽升级:

up to 70 GHz via FW

up to 110 GHz via HW

本底噪声:

410 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0592AP

UXR0592AP 是一款 Infiniium UXR 系列实时示波器,拥有 59 GHz 带宽、2 个通道和 1 毫米输入。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

59 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

460 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0594AP

UXR0594AP 是一款 Infiniium UXR 系列实时示波器,拥有 59 GHz 带宽、4 个通道和 1 mm 连接器输入 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

59 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

460 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0592A

UXR0592A 是一款 Infiniium UXR 系列实时示波器,拥有 59 GHz 带宽和 2 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

59 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

up to 70 GHz via FW

up to 110 GHz via HW

本底噪声:

460 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0594A

UXR0594A 是一款 Infiniium UXR 系列实时示波器,拥有 59 GHz 带宽和 4 个通道 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

59 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

up to 70 GHz via FW

up to 110 GHz via HW

本底噪声:

460 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0702AP

UXR0702AP 是一款 Infiniium UXR 系列实时示波器,拥有 70 GHz 带宽、2 个通道和 1 mm 连接器输入 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

70 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

500 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0704AP

UXR0704AP 是一款 Infiniium UXR 系列实时示波器,拥有 70 GHz 带宽、4 个通道和 1 mm 连接器输入 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

70 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

7.5ps(10-90%), 5.3ps(20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

500 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0702A

UXR0702A 是一款 Infiniium UXR 系列实时示波器,拥有 70 GHz 带宽和 2 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

70 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

6.3ps(10-90%), 4.4ps(20-80%)

带宽升级:

Up to 110 GHz via HW

本底噪声:

500 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0704A

UXR0704A 是一款 Infiniium UXR 系列实时示波器,拥有 70 GHz 带宽和 4 个通道 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

70 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

6.3ps(10-90%), 4.4ps(20-80%)

带宽升级:

Up to 110 GHz via HW

本底噪声:

500 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0802A

UXR0802A 是一款 UXR 系列 Infiniium 实时示波器,拥有 80 GHz 带宽和 2 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

80 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

5.6ps (10-90%), 3.9ps (20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

580 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR0804A

UXR0804A 是一款 UXR 系列 Infiniium 实时示波器,拥有 80 GHz 带宽和 4 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

80 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

5.6ps (10-90%), 3.9ps (20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

580 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR1002A

UXR1002A 是一款 UXR 系列 Infiniium 实时示波器,拥有 100 GHz 带宽和 2 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

100 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

5.6ps (10-90%), 3.9ps (20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

770 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR1004A

UXR1004A 是一款 UXR 系列 Infiniium 实时示波器,拥有 100 GHz 带宽和 4 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

100 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

5.6ps (10-90%), 3.9ps (20-80%)

带宽升级:

Up to 110 GHz via FW

本底噪声:

770 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR1102A

UXR1102A 是一款 UXR 系列 Infiniium 实时示波器,拥有 110 GHz 带宽和 2 个通道。 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

110 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

5.6ps (10-90%), 3.9ps (20-80%)

带宽升级:

Not Available

本底噪声:

860 µV(rms)

有效位数(ENOB):

n/a

Quick View

UXR1104A

UXR1104A 是一款 Infiniium UXR 系列实时示波器,拥有 110 GHz 带宽和 4 个通道 

起价

 

在线购买

See Buying Option

配置+购买

索取报价

带宽:

110 GHz

最大采样率:

256 GSa/s

最大存储器深度:

2 Gpts

最短上升/下降时间:

5.6ps (10-90%), 3.9ps (20-80%)

带宽升级:

Not Available

本底噪声:

860 µV(rms)

有效位数(ENOB):

n/a

Quick View

查看比较所有型号

下一页

查看 Infiniium UXR 系列技术资料

扩展功能

软件

驱动程序、固化软件和软件

查看所有软件

附件

Oscilloscope Probes Selection Guide

查看所有附件

服务

KeysightCare

校准服务

Education Services

技术更新服务

Financial Services

查看所有服务

支持

资源

软件下载中心

维修和校准

培训和活动

查看所有支持

特色资源

Data Sheets

2024.03.01

Infiniium UXR-Series Oscilloscopes

The Infiniium UXR-Series oscilloscopes deliver world-leading performance, ultra-low noise, and high signal fidelity for engineers and scientists to truly see and understand the fastest phenomena – enabling you to develop the next generation of technology and research more quickly.

2024.03.01

Configuration Guides

2022.08.24

Infiniium UXR-Series Oscilloscopes

Keysight Infiniium UXR-Series oscilloscopes deliver world-leading performance, ultra-low noise, and the highest signal fidelity available today, so engineers and scientists can truly see and understand even the fastest phenomena.

2022.08.24

Technical Overviews

2022.07.27

Infiniium UXR-Series Oscilloscopes

Infiniium UXR Series is the most advanced oscilloscope on the planet and it has up to four channels of simultaneous 110 GHz of bandwidth, each concurrently sampling at a staggering 256 GSa/s with 10 bits of high-definition analog to digital converter (ADC) resolution.

2022.07.27

Data Sheets

2024.01.02

Infiniium Oscilloscope Probes and Accessories

To get the most out of your Keysight Infiniium oscilloscope, you need the right probes and accessories for your particular applications. Whether you need the high bandwidth and low loading of an active probe, an easy way to connect to surface mount ICs, or a passive probe to measure high voltages, there’s a wide selection of high-quality probes and accessories for your Infiniium oscilloscope. The Infiniium probes and accessories data sheet provides you the overview of all probes and accessories recommended for Infiniium oscilloscopes.

2024.01.02

查看所有资源

需要帮助或遇到问题?

联系我们

Back to Top

查看

产品与服务

解决方案

行业

活动

是德科技云课堂

翻新设备

Insights

成功案例

资源

博客

社区

合作伙伴

支持

是德科技产品支持

管理软件许可证

产品订单状态

部件

关于 Keysight

新闻

投资者关系

品质与安全

企业社会责任

多元化、公平性和包容性

供应链透明化

招贤纳士

© 是德科技 2000–2024

隐私

网站地图

条款

商标致谢

反馈

京ICP备20005161号

京公网安备 11010502040140 号

版权声明:本文由imtoken官网版下载发布,如需转载请注明出处。

本文链接:https://www.siyuewuyu.com/article/280.html